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S-selection

What type signatures does a predicate’s denotation have?

Challenge
These analyses can be difficult to scale to an entire lexicon
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Introduction

Goals

1. Demonstrate a combined experimental-computational
method for scaling distributional analysis

2. Show that this method provides insight into general
principles governing lexical semantic structure

Basic idea

1. Formalize S(emantic)-selection, projection rules, and
lexical idiosyncrasy at Marr’s (1982) computational level

2. Collect data on ~1000 verbs’ syntactic distributions

3. Given syntactic distribution data, use computational
techniques to automate inference of projection rules and
verbs’ semantic type, controlling for lexical idiosyncrasy 5
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Focus

Clause-embedding predicates (~1000 in English)

Case study

Responsive predicates: take both interrogative and declaratives
(1) John knows {that, whether} it’s raining.

Importance

Deep literature on S-selection properties of responsives
Do they take questions, propositions, or both? (arttunen 1977, Groenendijk

& Stokhof 1984, Heim 1994, Ginzburg 1995, Lahiri 2002, George 2011, Rawlins 2013, Spector & Egre 2015, Uegaki 2015)
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Multiplicity

Many verbs are syntactically multiplicitous

(2) a. John knows {that, whether} it's raining.
b. John wants {it to rain, rain}.

Syntactic multiplicity does not imply semantic multiplicity

(3) a. John knows [what the answer is]s.
b. John knows [the answer]yp.

[(3b)] = [(3a)] suggests it is possible for type([NP]) = type([S])
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Semantic type ({{s,t),1), 1) (Montagovian notation)
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What do the projection rules look like?

How are a verb’s semantic type signatures projected onto its
syntactic type signatures (subcategorization frames)? (cruver 196s,

Jackendoff 1972, Carter 1976, Grimshaw 1979, 1990, Chomsky 1981, Pesetsky 1982, 1991, Pinker 1984, 1989, Levin 1993)

Semantic type [ Q]
Projection / \
Syntactictype [ S] [ NP]
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Lexical idiosyncrasy

Lexical idiosyncrasy

Observed syntactic distributions are not a perfect reflection of
semantic type + projection rules

Example
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(4) a.  Mary asked what time it was.
b. Mary asked the time.
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Lexical idiosyncrasy

Lexical idiosyncrasy

Observed syntactic distributions are not a perfect reflection of
semantic type + projection rules

Example

Some Q(uestion)-selecting verbs allow concealed questions...

(4) a.  Mary asked what time it was.
b. Mary asked the time.

...0thers do Not (Grimshaw 1979, Pesetsky 1982, 1991, Nathan 2006, Frana 2010, a.0)

(5) a. Mary wondered what time it was.
b. *Mary wondered the time. 2



Two kinds of lexical idiosyncrasy

Grimshaw (1979)

Verbs are related to semantic type signatures (S-selection) and
syntactic type signatures (C-selection)

13



Two kinds of lexical idiosyncrasy

Grimshaw (1979)

Verbs are related to semantic type signatures (S-selection) and
syntactic type signatures (C-selection)

Pesetsky (1982, 1991)

Verbs are related to semantic type signatures (S-selection); C-
selection is an epiphenomenon of verbs’ abstract case

13



Two kinds of lexical idiosyncrasy

Grimshaw (1979)

Verbs are related to semantic type signatures (S-selection) and
syntactic type signatures (C-selection)

Pesetsky (1982, 1991)

Verbs are related to semantic type signatures (S-selection); C-
selection is an epiphenomenon of verbs’ abstract case

Shared core

Lexical noise (idiosyncrasy) alters verbs’ idealized syntactic dis-
tributions

13



A model of S-selection and projection

Semantic
Type
Projection
Rules
Idealized
Syntactic
Distribution
Lexical
Noise \
Observed
Syntactic

Distribution 14



Specifying the model

Question

How do we represent each object in the model?

15



Specifying the model

Question

How do we represent each object in the model?

A minimalistic answer

Every object is a matrix of boolean values

15



Specifying the model

Question

How do we represent each object in the model?

A minimalistic answer

Every object is a matrix of boolean values

Strategy

1. Give model in terms of sets and functions

15



Specifying the model

Question

How do we represent each object in the model?

A minimalistic answer

Every object is a matrix of boolean values

Strategy

1. Give model in terms of sets and functions

2. Convert this model into a boolean matrix model

15
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A boolean model of S-selection

think —{[__PI}  know — {[ L wonder — {[

W
=[]

_\AO‘

]
know 1
~ wonder 0



A boolean model of projection

[ PI—={[_ thatS], [ NPJ] ..} [ Q] = {[___whetherS], [ NPJ],..}



A boolean model of projection

[ Pl—={[_ thatS][ ~ Ql—=f{[__whethers],[__NP],..}
~_thatS] [ whetherS] [ NP]

Pl 0
m=[_ Q] 1

N——
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A boolean model of observed syntactic distribution
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Animating abstractions

Question

What is this model useful for?

Answer

In conjunction with modern computational techniques, this model
allow us to scale distributional analysis to an entire lexicon

Basic idea

Distributional analysis corresponds to reversing model arrows

22
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The MegaAttitude data set
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Verb selection

inform
remind
satisfy
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MegaAttitude materials

Ordinal (1-7 scale) acceptability ratings
for

1000 clause-embedding verbs
X
50 syntactic frames
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Sentence construction

Challenge

Automate construction of a very large set of frames in a way that
is sufficiently general to many verbs
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Data collection

- 1,000 verbs x 50 syntactic frames = 50,000 sentences
-+ 1,000 lists of 50 items each
- Each verb only once per list
- Each frame only once per list
- 727 unique Mechanical Turk participants
- Annotators allowed to do multiple lists, but never the
same list twice
- 5judgments per item
- No annotator sees the same sentence more than once

31



Sentence Acceptabilty Task (expert annotation)
Requester: JHU Semantics Lab
Qualifications Required: None

Reward: $0.00 per HIT

HITs Available: 20

Duration: 14 weeks 2 days

1. Someone needed whether something happened.
2 3 4 5 6 7

2. Someone hated which thing to do.
1 2 3 4 5 6 7

3.  Someone was worried about something.
1 2 3 4 5 6 7

Someone allowed someone do something.
1 2 3 4 5 6 7

Turktools (Erlewine & Kotek 2015)

32



Validating the data

Interannotator agreement

Spearman rank correlation calculated by list on a pilot 30 verbs

Pilot verb selection

Same verbs used by White (2015), White et al. (2015), selected
based on Hacquard & Wellwood'’s (2012) attitude verb classifi-
cation

1. Linguist-to-linguist

median: 0.70, 95% Cl: [0.62, 0.78]
2. Linguist-to-annotator

median: 0.55, 95% Cl: [0.52, 0.58]
3. Annotator-to-annotator

median: 0.56, 95% Cl: [0.53, 0.59]
33
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A model of S-selection and projection
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Fitting the model

Goal

Find representations of verbs’ semantic type signatures and
projection rules that best explain the acceptability judgments
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Fitting the model

Goal
Find representations of verbs’ semantic type signatures and
projection rules that best explain the acceptability judgments

Challenges

1. Infeasible to search over 210007 x 2507 possible
configurations (T = # of type signatures)

2. Finding the best boolean model fails to capture
uncertainty inherent in judgment data

38



Fitting the model

Solution

Search probability distributions over verbs’ semantic type sig-
natures and projection rules
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Fitting the model

Solution

Search probability distributions over verbs’ semantic type sig-
natures and projection rules

Going probabilistic

Wrap boolean expressions in probability measures

39



A boolean model of idealized syntactic distribution

A

D(VERB, SYNTYPE) = \/,csuryees S(VERB, t) A TI(t, SYNTYPE)

[P [Q] - [ thatS] [ whetherS] [ NP]
think 1 0o - [Pl 1 0 1
know 1 1 [ ql 0 1 1
wonder 0 1 c .

[ thatS] [ whetherS] [ NP]

think 1 0 1
know 1 1 1
wonder 0 1 1
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A boolean model of idealized syntactic distribution

B(know, [__thatS]) =1—Tleq e a3 1= S(know,t) x TI(t,[__that S])

[ Pl [_Q - [ _thatS] [ whetherS]
think 0.94  0.03 - [P 0.99 0.12

know 0.97 091 - [ ql 0.07 0.98

wonder 0.17 0.93 :

[ thatS] [ whetherS]

think 0.97 0.14
know 0.95 0.99

wonder 0.12 0.99

40



Wrapping with probabilities

P(S[VERB, t] A II[t, SYNTYPE]) = P(S[VERB, t])P(IL[t, SYNTYPE] | S[VERB, 1])
= P(S[VERB, t])P(TI[t, SYNTYPE])

P (\/ S[VERB, t] A I[t, SYNTYPE]) =P <ﬁ /\ ~(SIVERB, t] A TI[t, SYNTYPE])>

=1-P </\ —(S[VERB, t] A II[t, SYNTYPE])>
=1 HIP (S[VERB, t] A II[t, SYNTYPE]))
== H1 — P (S[VERB, t] A II[t, SYNTYPE])

=1- H1 — P(S[VERB, t])P(II[t, SYNTYPE])

4



Fitting the model

Algorithm

Projected gradient descent with adaptive gradient (uchi et al 20m)
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Fitting the model

Algorithm

Projected gradient descent with adaptive gradient ouchi etat 201

Remaining challenge

Don't know the number of type signatures T

Standard solution

Fit the model with many type signatures and compare using an
information criterion, e.g., the Akaike Information Criterion (AIC)

42



Akaike Information Criterion

High-level idea

Measures the information theoretic “distance” to the true model
from the best model with T types signatures kaike 197)
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Akaike Information Criterion

High-level idea
Measures the information theoretic “distance” to the true model
from the best model with T types signatures kaike 197)

LOW' level |d €4a (cf. Gelman et al. 2013)

For each datapoint...

1. ..remove that datapoint from the dataset
2. ..fit the model to the remaining data
3. ..predict the held-out datapoint

In the limit, model with lowest error on step 3 has lowest AIC

43



Fitting the model

Result

12 is the optimal number of type signatures according to AIC

Reporting findings

Remainder of talk: best model with 12 type signatures

44



Three findings

1. Cognitive predicates
11 Two distinct type signatures [ Pland [ Q]
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[ P] [ Ql

T

[ thatS] [ whetherS]
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Three findings

1. Cognitive predicates
11 Two distinct type signatures [ Pland [ Q]
12 Coercionof [ Plto[ Qland[ QJto[ P]
2. Communicative predicates
21 Two unified type signatures [ (Ent) P@Q] (optional

recipient) and [ Ent P&Q] (obligatory recipient)

49



[ P] [ Ql

T

[ thatS] [ whetherS]

(Ent) P®Q]

/\

[ toNPthat$] ___to NP whether S]
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Hybrid types

Question

What do we mean by P&Q?

Example

Structures with potentially both informative and inquisitive con-

tent (Groenendijk & Roelofsen 2009, a.0.)

- S-selectional behavior of responsive predicates on some
ACCOUNTS (Uegaki 2012; Rawlins 2013)

- Some attitudes whose content is a hybrid Lewisian (1988)
Ssu bjeCt Matter (rRawlins 2013 on think v. think about)

51
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Discussion

What we conclude

Proposition and question types live alongside hybrid types, and
the presence of a hybrid type correlates with communicativity
What we can exclude

Accounts that reduce (or unify) declarative and interrogative se-
lection solely to S-selection of a single type + coercion

Methodological point

Coercion can have measurable effects
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Conclusions

Goals

1. Demonstrate a combined experimental-computational
method for scaling distributional analysis

2. Show that this method provides insight into general
principles governing lexical semantic structure

Basic idea

1. Formalize S(emantic)-selection, projection rule, and
lexical idiosyncrasy at Marr’s (1982) computational level

2. Collect data on ~1000 verbs’ syntactic distributions

3. Given syntactic distribution data, use computational
techniques to automate inference of projection rules and
verbs’ semantic type, controlling for lexical idiosyncrasy 67
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Conclusions

Focus

Clause-embedding predicates (~1000 in English)

Case study

Responsive predicates and the features that underly their se-
lectional behavior.

(7)  John knows {that, whether} it's raining.

By looking at such a large data set, we can discover the
relevant s-selectional features, and get an angle on the
problem at the scale of the entire lexicon.
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Future directions

Further investigation of type signatures

Seven other type signatures that are also remarkably coherent

Example

Many nonfinite-taking verbs
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Future directions

Atomic v. structured type signatures

Currently treating type signatures as atomic but type signatures
have rich structure

Example

Preliminary experiments with models that represent type struc-
ture suggest that our glosses for the types are correct
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Future directions

Homophony v. regular polysemy v. underspecification

Patternsin how semantic type signatures distribute across verbs
may belie regular polysemy rules

Example

Preliminary experiments with a more elaborated model suggest
responsive predicates display a regular polysemy (. ceorge 201)
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Subgoal

Find the optimal number T of type signatures
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Fitting the model

Number of type signatures

Low extreme
All verbs' syntactic
distributions explained
by single rule
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Fitting the model

Number of type signatures

1 2 3 4 5 6 7
Low extreme High extreme
All verbs’ syntactic # types > # frames
distributions explained every syntactic frame
by single rule has separate rule
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Fitting the model

Subgoal

Find the optimal number T of type signatures

Goodness of T «<» model’s ability to... ..fit observed judgments
..predict unobserved judgments

bad fit

- Ttoo small — o
bad prediction

good fit

- Ttoo large — o
bad prediction

Measure

Akaike Information Criterion (AIC) trades off fit to observed
data and prediction of unobserved data .



Model comparison
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