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Introduction

Preliminary
Traditional distributional analyses have had tremendous suc-
cess in helping us understand S(emantic)-selection

S-selection
What type signatures does a predicate’s denotation have?

Challenge
These analyses can be difficult to scale to an entire lexicon
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Introduction

Goals

1. Demonstrate a combined experimental-computational
method for scaling distributional analysis

2. Show that this method provides insight into general
principles governing lexical semantic structure

Basic idea

1. Formalize S(emantic)-selection, projection rules, and
lexical idiosyncrasy at Marr’s (1982) computational level

2. Collect data on ∼1000 verbs’ syntactic distributions
3. Given syntactic distribution data, use computational

techniques to automate inference of projection rules and
verbs’ semantic type, controlling for lexical idiosyncrasy
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Introduction

Focus

Clause-embedding predicates (∼1000 in English)

Case study
Responsive predicates: take both interrogative and declaratives

(1) John knows {that, whether} it’s raining.

Importance
Deep literature on S-selection properties of responsives
Do they take questions, propositions, or both? (Karttunen 1977, Groenendijk

& Stokhof 1984, Heim 1994, Ginzburg 1995, Lahiri 2002, George 2011, Rawlins 2013, Spector & Egre 2015, Uegaki 2015)
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Selection and clausal embedding



Multiplicity

Many verbs are syntactically multiplicitous

(2) a. John knows {that, whether} it’s raining.
b. John wants {it to rain, rain}.

Syntactic multiplicity does not imply semantic multiplicity

(3) a. John knows [what the answer is]S.
b. John knows [the answer]NP.

J(3b)K = J(3a)K suggests it is possible for type(JNPK) = type(JSK)

9
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Projection

What do the projection rules look like?
How are a verb’s semantic type signatures projected onto its
syntactic type signatures (subcategorization frames)? (Gruber 1965,

Jackendoff 1972, Carter 1976, Grimshaw 1979, 1990, Chomsky 1981, Pesetsky 1982, 1991, Pinker 1984, 1989, Levin 1993)

[ Q]⟨⟨⟨s,t⟩,t⟩, t⟩[ Q] (Grimshaw’s notation)(Montagovian notation)

[ S] [ NP]

Semantic type

Projection

Syntactic type
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A model of S-selection and projection

Semantic
Type

Syntactic
Distribution
Idealized
Syntactic

Distribution

Observed
Syntactic

Distribution

Acceptability
Judgment

Data

Projection
Rules

Lexical
Noise
Noise
Model
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Lexical idiosyncrasy

Lexical idiosyncrasy
Observed syntactic distributions are not a perfect reflection of
semantic type + projection rules

Example

Some Q(uestion)-selecting verbs allow concealed questions...

(4) a. Mary asked what time it was.
b. Mary asked the time.

...others do not (Grimshaw 1979, Pesetsky 1982, 1991, Nathan 2006, Frana 2010, a.o.)

(5) a. Mary wondered what time it was.
b. *Mary wondered the time.
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Two kinds of lexical idiosyncrasy

Grimshaw (1979)

Verbs are related to semantic type signatures (S-selection) and
syntactic type signatures (C-selection)

Pesetsky (1982, 1991)

Verbs are related to semantic type signatures (S-selection); C-
selection is an epiphenomenon of verbs’ abstract case

Shared core

Lexical noise (idiosyncrasy) alters verbs’ idealized syntactic dis-
tributions
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Specifying the model

Question
How do we represent each object in the model?

A minimalistic answer
Every object is a matrix of boolean values

Strategy

1. Give model in terms of sets and functions
2. Convert this model into a boolean matrix model
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A boolean model of S-selection

know → {[ P], [ Q]}think → {[ P]} wonder → {[ Q]}

S =


[ P] [ Q] · · ·

think 1 0 · · ·
know 1 1 · · ·
wonder 0 1 · · ·
· · ·

...
... . . .


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A boolean model of projection

[ P] → {[ that S], [ NP], ...} [ Q] → {[ whether S], [ NP], ...}

Π =


[ that S] [ whether S] [ NP] · · ·

[ P] 1 0 1 · · ·
[ Q] 0 1 1 · · ·

· · ·
...

...
... . . .


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A boolean model of idealized syntactic distribution

D̂(VERB, SYNTYPE) =
∨

t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) =
∨

t∈{[ P],[ Q],...} S(know, t) ∧Π(t, [ that S])D̂(wonder, [ NP]) =
∨

t∈{[ P],[ Q],...} S(wonder, t) ∧Π(t, [ NP])D̂(VERB, SYNTYPE) =
∨

t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) = 1−
∏

t∈{[ P],[ Q],...} 1− S(know, t)×Π(t, [ that S])



[ P] [ Q] · · ·
think 1 0 · · ·
know 1 1 · · ·
wonder 0 1 · · ·

· · ·
...

...
. . .




[ P] [ Q] · · ·
think 0.94 0.03 · · ·
know 0.97 0.91 · · ·
wonder 0.17 0.93 · · ·

· · ·
...

...
. . .




[ that S] [ whether S] [ NP] · · ·
[ P] 1 0 1 · · ·
[ Q] 0 1 1 · · ·

· · ·
...

...
...

. . .




[ that S] [ whether S] · · ·
[ P] 0.99 0.12 · · ·
[ Q] 0.07 0.98 · · ·

· · ·
...

...
. . .





[ that S] [ whether S] [ NP] · · ·
think 1 0 1 · · ·
know 1 1 1 · · ·
wonder 0 1 1 · · ·

· · ·
...

...
...

. . .




[ that S] [ whether S] · · ·
think 0.97 0.14 · · ·
know 0.95 0.99 · · ·
wonder 0.12 0.99 · · ·

· · ·
...

...
. . .


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A boolean model of idealized syntactic distribution
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A boolean model of observed syntactic distribution

∀t ∈ SYNTYPE : D(wonder, t) = D̂(wonder, t) ∧ N(wonder, t)
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Animating abstractions

Question
What is this model useful for?

Answer
In conjunction withmodern computational techniques, thismodel
allow us to scale distributional analysis to an entire lexicon

Basic idea
Distributional analysis corresponds to reversing model arrows

22
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The MegaAttitude data set



MegaAttitude materials

Ordinal (1-7 scale) acceptability ratings

for
1000 clause-embedding verbs

×
50 syntactic frames
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Verb selection
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Sentence construction

Challenge
Automate construction of a very large set of frames in a way that
is sufficiently general to many verbs

Solution
Construct semantically bleached frames using indefinites

(6) Examples of responsives
a. know + NP V {that, whether} S

Someone knew {that, whether} something
happened.

b. tell + NP V NP {that, whether} S
Someone told someone {that, whether} something
happened.

28



Frame construction

Syntactic type

NP PP S

[ NP] [ PP] [ NP S] [ S][ NP PP] [ PP S]

ACTIVE PASSIVE COMP TENSE

that [+Q] for ∅

whether which NP

[+FIN] [-FIN]

-ed would to ∅ -ing

29



Frame construction

Syntactic type

NP PP S

[ NP] [ PP] [ NP S] [ S][ NP PP] [ PP S]

ACTIVE PASSIVE COMP TENSE

that [+Q] for ∅

whether which NP

[+FIN] [-FIN]

-ed would to ∅ -ing

29



Frame construction

Syntactic type

NP PP S

[ NP] [ PP] [ NP S] [ S][ NP PP] [ PP S]

ACTIVE PASSIVE COMP TENSE

that [+Q] for ∅

whether which NP

[+FIN] [-FIN]

-ed would to ∅ -ing

29



Frame construction

Syntactic type

NP PP S

[ NP] [ PP] [ NP S] [ S][ NP PP] [ PP S]

ACTIVE PASSIVE COMP TENSE

that [+Q] for ∅

whether which NP

[+FIN] [-FIN]

-ed would to ∅ -ing

29



Frame construction

Syntactic type

NP PP S

[ NP] [ PP] [ NP S] [ S][ NP PP] [ PP S]

ACTIVE PASSIVE COMP TENSE

that [+Q] for ∅

whether which NP

[+FIN] [-FIN]

-ed would to ∅ -ing

29



Frame construction

Syntactic type

NP PP S

[ NP] [ PP] [ NP S] [ S][ NP PP] [ PP S]

ACTIVE PASSIVE COMP TENSE

that [+Q] for ∅

whether which NP

[+FIN] [-FIN]

-ed would to ∅ -ing

29



Frame construction

Syntactic type

NP PP S

[ NP] [ PP] [ NP S] [ S][ NP PP] [ PP S]

ACTIVE PASSIVE COMP TENSE

that [+Q] for ∅

whether which NP

[+FIN] [-FIN]

-ed would to ∅ -ing

29



Frame construction

Syntactic type

NP PP S

[ NP] [ PP] [ NP S] [ S][ NP PP] [ PP S]

ACTIVE PASSIVE COMP TENSE

that [+Q] for ∅

whether which NP

[+FIN] [-FIN]

-ed would to ∅ -ing

29



Frame construction

Syntactic type

NP PP S

[ NP] [ PP] [ NP S] [ S][ NP PP] [ PP S]

ACTIVE PASSIVE COMP TENSE

that [+Q] for ∅

whether which NP

[+FIN] [-FIN]

-ed would to ∅ -ing

29



Frame construction

Syntactic type

NP PP S

[ NP] [ PP] [ NP S] [ S][ NP PP] [ PP S]

ACTIVE PASSIVE COMP TENSE

that [+Q] for ∅

whether which NP

[+FIN] [-FIN]

-ed would to ∅ -ing

29



Sentence construction

Challenge
Automate construction of a very large set of frames in a way that
is sufficiently general to many verbs

Solution
Construct semantically bleached frames using indefinites

(6) Examples of responsives
a. know + NP V {that, whether} S

Someone knew {that, whether} something
happened.

b. tell + NP V NP {that, whether} S
Someone told someone {that, whether} something
happened.

30



Sentence construction

Challenge
Automate construction of a very large set of frames in a way that
is sufficiently general to many verbs

Solution
Construct semantically bleached frames using indefinites

(6) Examples of responsives
a. know + NP V {that, whether} S

Someone knew {that, whether} something
happened.

b. tell + NP V NP {that, whether} S
Someone told someone {that, whether} something
happened.

30



Sentence construction

Challenge
Automate construction of a very large set of frames in a way that
is sufficiently general to many verbs

Solution
Construct semantically bleached frames using indefinites

(6) Examples of responsives
a. know + NP V {that, whether} S

Someone knew {that, whether} something
happened.

b. tell + NP V NP {that, whether} S
Someone told someone {that, whether} something
happened. 30



Sentence construction
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Data collection

• 1,000 verbs × 50 syntactic frames = 50,000 sentences

• 1,000 lists of 50 items each
• Each verb only once per list
• Each frame only once per list

• 727 unique Mechanical Turk participants
• Annotators allowed to do multiple lists, but never the
same list twice

• 5 judgments per item
• No annotator sees the same sentence more than once

31
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Task

Turktools (Erlewine & Kotek 2015)

32



Validating the data

Interannotator agreement
Spearman rank correlation calculated by list on a pilot 30 verbs

Pilot verb selection

Same verbs used by White (2015), White et al. (2015), selected
based on Hacquard & Wellwood’s (2012) attitude verb classifi-
cation

1. Linguist-to-linguist
median: 0.70, 95% CI: [0.62, 0.78]

2. Linguist-to-annotator
median: 0.55, 95% CI: [0.52, 0.58]

3. Annotator-to-annotator
median: 0.56, 95% CI: [0.53, 0.59]
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Model fitting and results
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Fitting the model

Goal
Find representations of verbs’ semantic type signatures and
projection rules that best explain the acceptability judgments

Challenges

1. Infeasible to search over 21000T × 250T possible
configurations (T = # of type signatures)

2. Finding the best boolean model fails to capture
uncertainty inherent in judgment data

38
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Fitting the model

Solution
Search probability distributions over verbs’ semantic type sig-
natures and projection rules

Going probabilistic
Wrap boolean expressions in probability measures
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A boolean model of idealized syntactic distribution

D̂(VERB, SYNTYPE) =
∨

t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) =
∨

t∈{[ P],[ Q],...} S(know, t) ∧Π(t, [ that S])D̂(wonder, [ NP]) =
∨

t∈{[ P],[ Q],...} S(wonder, t) ∧Π(t, [ NP])D̂(VERB, SYNTYPE) =
∨

t∈SEMTYPES S(VERB, t) ∧Π(t, SYNTYPE)D̂(know, [ that S]) = 1−
∏

t∈{[ P],[ Q],...} 1− S(know, t)×Π(t, [ that S])



[ P] [ Q] · · ·
think 1 0 · · ·
know 1 1 · · ·
wonder 0 1 · · ·

· · ·
...

...
. . .




[ P] [ Q] · · ·
think 0.94 0.03 · · ·
know 0.97 0.91 · · ·
wonder 0.17 0.93 · · ·

· · ·
...

...
. . .




[ that S] [ whether S] [ NP] · · ·
[ P] 1 0 1 · · ·
[ Q] 0 1 1 · · ·

· · ·
...

...
...

. . .




[ that S] [ whether S] · · ·
[ P] 0.99 0.12 · · ·
[ Q] 0.07 0.98 · · ·

· · ·
...

...
. . .





[ that S] [ whether S] [ NP] · · ·
think 1 0 1 · · ·
know 1 1 1 · · ·
wonder 0 1 1 · · ·

· · ·
...

...
...

. . .




[ that S] [ whether S] · · ·
think 0.97 0.14 · · ·
know 0.95 0.99 · · ·
wonder 0.12 0.99 · · ·

· · ·
...

...
. . .


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A boolean model of idealized syntactic distribution
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Wrapping with probabilities

P(S[VERB, t] ∧Π[t, SYNTYPE]) = P(S[VERB, t])P(Π[t, SYNTYPE] | S[VERB, t])
= P(S[VERB, t])P(Π[t, SYNTYPE])

P

(∨
t
S[VERB, t] ∧Π[t, SYNTYPE]

)
= P

(
¬
∧
t
¬(S[VERB, t] ∧Π[t, SYNTYPE])

)

= 1− P

(∧
t
¬(S[VERB, t] ∧Π[t, SYNTYPE])

)
= 1−

∏
t
P (¬(S[VERB, t] ∧Π[t, SYNTYPE]))

= 1−
∏
t
1− P (S[VERB, t] ∧Π[t, SYNTYPE])

= 1−
∏
t
1− P(S[VERB, t])P(Π[t, SYNTYPE])

41



Fitting the model

Algorithm
Projected gradient descent with adaptive gradient (Duchi et al. 2011)

Remaining challenge
Don’t know the number of type signatures T

Standard solution
Fit the model with many type signatures and compare using an
information criterion, e.g., the Akaike Information Criterion (AIC)

42



Fitting the model

Algorithm
Projected gradient descent with adaptive gradient (Duchi et al. 2011)

Remaining challenge
Don’t know the number of type signatures T

Standard solution
Fit the model with many type signatures and compare using an
information criterion, e.g., the Akaike Information Criterion (AIC)

42



Fitting the model

Algorithm
Projected gradient descent with adaptive gradient (Duchi et al. 2011)

Remaining challenge
Don’t know the number of type signatures T

Standard solution
Fit the model with many type signatures and compare using an
information criterion, e.g., the Akaike Information Criterion (AIC)

42



Akaike Information Criterion

High-level idea
Measures the information theoretic “distance” to the truemodel
from the best model with T types signatures (Akaike 1974)

Low-level idea (cf. Gelman et al. 2013)

For each datapoint...

1. ...remove that datapoint from the dataset
2. ...fit the model to the remaining data
3. ...predict the held-out datapoint

In the limit, model with lowest error on step 3 has lowest AIC
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2. ...fit the model to the remaining data
3. ...predict the held-out datapoint

In the limit, model with lowest error on step 3 has lowest AIC
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Fitting the model

Result
12 is the optimal number of type signatures according to AIC

Reporting findings
Remainder of talk: best model with 12 type signatures

44



Findings

Three findings

1. Cognitive predicates
1.1 Two distinct type signatures [ P] and [ Q]

1.2 Coercion of [ P] to [ Q] and [ Q] to [ P]

2. Communicative predicates
2.1 Two unified type signatures [ (Ent) P⊕Q] (optional

recipient) and [ Ent P⊕Q] (obligatory recipient)
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Hybrid types

Question
What do we mean by P⊕Q?

Example
Structures with potentially both informative and inquisitive con-
tent (Groenendijk & Roelofsen 2009, a.o.)

• S-selectional behavior of responsive predicates on some
accounts (Uegaki 2012; Rawlins 2013)

• Some attitudes whose content is a hybrid Lewisian (1988)
subject matter (Rawlins 2013 on think v. think about)

51



Projection

NP Ved to VP[eventive]
NP Ved for NP to VP

NP Ved to VP[stative]
NP Ved VPing

NP Ved NP to VP[stative]
NP Ved NP VP

NP Ved NP to VP[eventive]
NP Ved to NP whether S[future]

NP Ved to NP whether S
NP Ved to NP that S[future]

NP Ved to NP that S
NP Ved to NP that S[-tense]

NP Ved NP to NP
NP Ved about whether S

NP Ved about NP
NP Ved

NP was Ved whether S[future]
NP was Ved whether S

NP was Ved about whether S
NP was Ved that S[future]

NP was Ved that S
NP was Ved about NP
NP Ved NP whichNP S

NP Ved NP that S[-tense]
NP was Ved whichNP S

NP was Ved whether to VP
NP Ved NP whether S[future]

NP Ved NP whether S
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NP was Ved to VP[eventive]

NP was Ved
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NP Ved whether to VP

NP Ved whether S[future]
NP Ved whether S
NP Ved whichNP S
NP Ved NP VPing

NP Ved NP
NP Ved that S[-tense]

NP Ved so
S, I V

NP Ved S
NP Ved that S[future]

NP Ved that S
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Projection
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NP Ved that S
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Projection
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Projection
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Findings

[ P] [ Q]

[ that S] [ whether S]
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Discussion

What we conclude
Proposition and question types live alongside hybrid types, and
the presence of a hybrid type correlates with communicativity

What we can exclude

Accounts that reduce (or unify) declarative and interrogative se-
lection solely to S-selection of a single type + coercion

Methodological point
Coercion can have measurable effects
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Conclusions and future directions



Conclusions

Goals

1. Demonstrate a combined experimental-computational
method for scaling distributional analysis

2. Show that this method provides insight into general
principles governing lexical semantic structure

Basic idea

1. Formalize S(emantic)-selection, projection rule, and
lexical idiosyncrasy at Marr’s (1982) computational level

2. Collect data on ∼1000 verbs’ syntactic distributions
3. Given syntactic distribution data, use computational

techniques to automate inference of projection rules and
verbs’ semantic type, controlling for lexical idiosyncrasy
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Conclusions

Focus

Clause-embedding predicates (∼1000 in English)

Case study
Responsive predicates and the features that underly their se-
lectional behavior.

(7) John knows {that, whether} it’s raining.

By looking at such a large data set, we can discover the
relevant s-selectional features, and get an angle on the
problem at the scale of the entire lexicon.
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Future directions

Further investigation of type signatures
Seven other type signatures that are also remarkably coherent

Example
Many nonfinite-taking verbs
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Future directions

Atomic v. structured type signatures
Currently treating type signatures as atomic but type signatures
have rich structure

Example
Preliminary experiments with models that represent type struc-
ture suggest that our glosses for the types are correct
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Future directions

Homophony v. regular polysemy v. underspecification
Patterns in how semantic type signatures distribute across verbs
may belie regular polysemy rules

Example
Preliminary experiments with a more elaborated model suggest
responsive predicates display a regular polysemy (cf. George 2011)

71



Thanks

We are grateful to audiences at Johns Hopkins University for
discussion of this work. We would like to thank Shevaun Lewis
and Drew Reisinger in particular for useful comments on this
talk.

This work was funded by NSF DDRIG-1456013 (Doctoral
Dissertation Research: Learning attitude verb meanings), NSF
INSPIRE BCS-1344269 (Gradient symbolic computation), and the
JHU Science of Learning Institute.

72



Bibliography I

Akaike, Hirotugu. 1974. A new look at the statistical model
identification. IEEE Transactions on Automatic Control 19(6).
716–723.

Carter, Richard. 1976. Some linking regularities. On Linking: Papers by
Richard Carter Cambridge MA: Center for Cognitive Science, MIT
(Lexicon Project Working Papers No. 25) .

Chomsky, Noam. 1981. Lectures on Government and Binding: The Pisa
Lectures. Walter de Gruyter.

Duchi, John, Elad Hazan & Yoram Singer. 2011. Adaptive subgradient
methods for online learning and stochastic optimization. The
Journal of Machine Learning Research 12. 2121–2159.

73



Bibliography II

Erlewine, Michael Yoshitaka & Hadas Kotek. 2015. A streamlined
approach to online linguistic surveys. Natural Language &
Linguistic Theory 1–15. doi:10.1007/s11049-015-9305-9.
http://link.springer.com/article/10.1007/
s11049-015-9305-9.

Frana, Ilaria. 2010. Concealed Questions: in search of answers:
University of Massachusetts at Amherst Ph.D. dissertation.

Gelman, Andrew, Jessica Hwang & Aki Vehtari. 2013. Understanding
predictive information criteria for Bayesian models. Statistics and
Computing 1–20.

George, Benjamin Ross. 2011. Question embedding and the semantics
of answers: University of California Los Angeles dissertation.

Ginzburg, Jonathan. 1995. Resolving questions, II. Linguistics and
Philosophy 18(6). 567–609.

74

http://link.springer.com/article/10.1007/s11049-015-9305-9
http://link.springer.com/article/10.1007/s11049-015-9305-9


Bibliography III

Grimshaw, Jane. 1979. Complement selection and the lexicon.
Linguistic Inquiry 10(2). 279–326.

Grimshaw, Jane. 1990. Argument structure. Cambridge, MA: MIT Press.
Groenendijk, Jeroen & Floris Roelofsen. 2009. Inquisitive semantics

and pragmatics. Paper presented at Stanford workshop on
Language, Communication, and Rational Agency.

Groenendijk, Jeroen & Martin Stokhof. 1984. On the semantics of
questions and the pragmatics of answers. Varieties of formal
semantics 3. 143–170.

Gruber, Jeffrey Steven. 1965. Studies in lexical relations:
Massachusetts Institute of Technology dissertation.

Hacquard, Valentine & Alexis Wellwood. 2012. Embedding epistemic
modals in English: A corpus-based study. Semantics and
Pragmatics 5(4). 1–29.

75



Bibliography IV

Heim, Irene. 1994. Interrogative semantics and Karttunen’s semantics
for know. In Proceedings of IATL, vol. 1, 128–144.

Jackendoff, Ray. 1972. Semantic interpretation in generative grammar.
Cambridge, MA: MIT Press.

Karttunen, Lauri. 1977. Syntax and semantics of questions. Linguistics
and philosophy 1(1). 3–44.

Lahiri, Utpal. 2002. Questions and answers in embedded contexts.
Oxford University Press.

Levin, Beth. 1993. English verb classes and alternations: A
preliminary investigation. University of Chicago Press.

Lewis, David. 1988. Relevant implication. Theoria 54(3). 161–174.

76



Bibliography V

Marr, David. 1982. Vision: a computational investigation into the
human representation and processing of visual information.
Henry Holt and Co. .

Nathan, Lance Edward. 2006. On the interpretation of concealed
questions: Massachusetts Institute of Technology dissertation.

Pesetsky, David. 1982. Paths and categories: MIT dissertation.
Pesetsky, David. 1991. Zero syntax: vol. 2: Infinitives.
Pinker, Steven. 1984. Language learnability and language

development. Harvard University Press.
Pinker, Steven. 1989. Learnability and cognition: The acquisition of

argument structure. Cambridge, MA: MIT Press.
Rawlins, Kyle. 2013. About ’about’. In Semantics and Linguistic

Theory, vol. 23, 336–357.

77



Bibliography VI

Spector, Benjamin & Paul Egre. 2015. A uniform semantics for
embedded interrogatives: An answer, not necessarily the answer.
Synthese 192(6). 1729–1784.

Uegaki, Wataru. 2012. Content nouns and the semantics of
question-embedding predicates. In Ana Aguilar-Guevara, Anna
Chernilovskaya & Rick Nouwen (eds.), Proceedings of SuB 16, .

Uegaki, Wataru. 2015. Interpreting questions under attitudes: MIT
dissertation.

White, Aaron Steven. 2015. Information and incrementality in
syntactic bootstrapping: University of Maryland dissertation.

White, Aaron Steven, Valentine Hacquard & Jeffrey Lidz. 2015.
Projecting attitudes.

78



Appendix



The response model

Two functions

1. Normalize for participants’ judgments so they are
comparable

2. Control for lexicosyntactic noise

80



The response model

Two functions

1. Normalize for participants’ judgments so they are
comparable

2. Control for lexicosyntactic noise

80



The response model

Why normalize judgments?
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The response model
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Fitting the model

Subgoal
Find the optimal number T of type signatures

Goodness of T ↔ model’s ability to... ...fit observed judgments
...predict unobserved judgments

• T too small →

bad fit
bad prediction

• T too large →

good fit
bad prediction

Measure

Akaike Information Criterion (AIC) trades off fit to observed
data and prediction of unobserved data
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Number of type signatures
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Low extreme
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every syntactic frame
has separate rule
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Model comparison
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