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Humans are good at extracting the chronology of 
events from linguistic input. 
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At 3pm, a boy broke his neighbor’s 
window. He was running away, when the 
neighbor rushed out to confront him. His 
parents were called but couldn’t arrive for 
two hours because they were still at work.

Input Document:

Two components are crucial:
1. Relations between events
2. Durations of individual events
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Corpora
- TimeBank corpus 

- TempEval tasks

- TimeBank-Dense

- Richer Event Description (RED)

- Hong et al. (2016)

- Grounded Annotation Framework (GAF)

(Fokkens et al., 2013)
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Models
- Hand-tagged features with multinomial logistic regression and Support Vector Machines (SVM)

- Combined rule based and learning-based approaches

- Sieve-based architectures— CAEVO and CATENA

- Structured learning approaches

- Neural Network based approaches

- Jointly modeling causal and temporal relations

- Event durations from text

(Pan et al., 2007; Gusev et al., 2011; Williams and Katz, 2012)
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<TIMEX TYPE="DATE"> fiscal 1989’s fourth quarter </TIMEX>
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Corpora Drawbacks
- Event durations are not explicitly captured.

- Experts are needed to annotate these datasets.

- Event timelines are not directly captured and it is not trivial to create document timelines. 

However, approaches have been used to create relative timelines from the temporal relations 

(Leeuwenberg and Moens, 2018)
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Representing Event Timelines
- A novel Universal Decompositional Semantics (UDS) framework for temporal relation 

representation that puts event duration front and center.

- We map the events or situations to a timeline represented in real numbers.

Sam broke the window and ran away.

broke

ran
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Protocol Design
- We ask questions about the chronology of events and the duration of each event

- Annotated example  (next slide)





start-point end-point







Background Methodology Model Results Analysis Conclusion 

Data Collection
- We took English Web Treebank (EWT) from Universal Dependencies (UD) and designed a 

protocol to extract fine-grained temporal relations.



Background Methodology Model Results Analysis Conclusion 

Data Collection
- We took English Web Treebank (EWT) from Universal Dependencies (UD) and designed a 

protocol to extract fine-grained temporal relations.

- Extracted predicates from UD-data using PredPatt 

(White et al., 2016; Zhang et al., 2017)
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- We recruited 765 annotators from Amazon Mechanical Turk to annotate predicate pairs in groups of 

five. The resulting dataset is UDS-Time.

~30k

70k
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Data Distributions
Event Relations

High Containment:

Both Tina and Vicky 
are excellent. I will 
definitely refer my friends and 
family.

e1
e2
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Data Distributions
Event Relations

High Equality:

I go Disco dancing and 
Cheerleading. It's fab! 

e1

e2
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Goal
To model the pairwise fine-grained temporal relations and durations by attempting to automatically 
build featural representations of each predicate, its duration and its relation.
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What to feed my dog after 
gastroenteritis? My dog has 
been sick for about 3 days 
now.

Model Architecture
Full Architecture
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Performance on TimeBank-Dense
A transfer learning approach on TimeBank-Dense to predict standard categorical temporal relations.

Our transfer learning approach beats most systems on TimeBank-Dense (Event-Event Relations)

0.566

0.529
0.519

0.494
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Document Timelines
- A model to induce document timelines from the pairwise predictions

- The Spearman correlation for timelines induced from our model and the timelines induced from the 
actual data:

beginning point: 0.28
duration: -0.097 

- The low correlation values suggest that even though the model is good at predicting pairwise 
predictions, it struggles to generate the entire document timeline
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Introduction

- Overarching question: How do humans extract chronology of events?

Background

- A standard approach in previous corpora: Categorical temporal relations
- Limitations: no duration information, hard to annotate, lacking fine-grained relation distinctions

Methodology: A new approach

- Mapping events to timelines represented in real number
- Explicitly annotating event durations
- Construction of a new dataset: UDS-Time
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Model

- Vector representation of events, event-duration, fine-grained temporal relations
- Neural Network architecture with linguistically motivated self-attention mechanism

Results

- High correlation (~77%) for start-points and end-points in pairwise event relations
- Reasonable duration rank-difference of 1.75 by the best model
- Competitive performance on TimeBank-Dense Event-Event Relations
- Low correlation between induced document timelines from actual annotations and predicted values

Model Analysis 

- Most attended words for duration-attention are words which denote some time-span such as month, 
minutes, year, week etc. 

- Most attended word for relation-attention are either coordinators (or, and) or words containing tense 
information (present tense, past tense)
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Pivot-Predicate
- Adjacent sentences in a document were concatenated together to be able to capture inter-sentential 

temporal relations.

- Considering all possible event-pairs is infeasible. Hence, we design the following heuristic to select 
the pivot predicate from a sentence:

We find the root-predicate of the sentence and if it governs a CCOMP, CSUBJ, or XCOMP, we 
follow that dependency to the next predicate until we find a predicate that doesn't govern a CCOMP, 
CSUBJ, or XCOMP.



Pivot-Predicate
- Adjacent sentences in a document were concatenated together to be able to capture inter-sentential 

temporal relations.

- Considering all possible event-pairs is infeasible. Hence, we design the following heuristic to select 
the pivot predicate from a sentence:

We find the root-predicate of the sentence and if it governs a CCOMP, CSUBJ, or XCOMP, we 
follow that dependency to the next predicate until we find a predicate that doesn't govern a CCOMP, 
CSUBJ, or XCOMP.

Sentence:
“Has anyone considered that perhaps 
George Bush just wanted to fly jets?”

Fig3: An example  of our heuristic to find the pivot predicate
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Rejecting Annotations
Multiple checks to detect potentially bad annotations:

- Time completion (< 60 seconds)
- Same slider positions in all annotations
- Same duration values in all annotations 
- Inconsistency between slider and duration values

 

Span: 10
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Inter-annotator Agreement
- 765 annotators from Amazon Mechanical Turk
- Train set: 1 annotation per predicate-pair
- Dev, and Test set: 3 annotations per predicate-pair

Relations:
Average Spearman Rank correlation between slider positions:  0.665 (95% CI=[0.661, 0.669])

Durations:
Average Absolute difference in Duration rank: 2.24 scale points (95% CI=[2.21, 2.25])

- Heavy positive skew (γ1 = 1.16, 95% CI=[1.15, 1.18])
- Modal rank difference is 1 (25.3% of the response pairs), with rank difference 0 as the next most 

likely (24.6%) and rank difference 2 as a distant third (15.4%).



Appendix D 

Normalization
- Annotated Slider positions are normalized
- Absolute slider positions are meaningless
- Relative chronology preserved

Fig: Normalization of slider values (a toy example with three annotators -- A, B, and C)



Appendix F 

Further Analysis on Relations
- We rotate the predicted slider positions in the relation space as shown in Data Distribution and 

compare it with the rotated space of actual slider positions

- We obtain Spearman correlations of :
0.19 for PRIORITY, 
0.23 for CONTAINMENT, and
0.17 for EQUALITY


