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Introduction



Overarching question

How are a verb’s semantic properties related to its
syntactic distribution? Gruber 1965; Fillmore 1970; Zwicky 1971; Jackendoff 1972;

Grimshaw 1979, 1990; Pesetsky 1982, 1991; Pinker 1989; Levin 1993
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What could matter?

Factors claimed to affect the distribution of nominals
Sensitive to event structural properties like stativity, telicity,
durativity, causativity, transfer, etc. (see Levin and Rappaport Hovav 2005)

Factors claimed to affect the distribution of clauses
Sensitive to ‘content-dependent’ properties like representationality,
preferentiality, factivity/veridicality, communicativity, etc. Bolinger 1968;
Hintikka 1975; Hooper 1975; Stalnaker 1984; Farkas 1985; Villalta 2000, 2008; Kratzer 2006; Egré 2008;

Scheffler 2009; Moulton 2009; Anand and Hacquard 2013; Rawlins 2013; Portner and Rubinstein

2013; Anand and Hacquard 2014; Spector and Egré 2015; Bogal-Allbritten 2016; Theiler et al. 2017
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Overarching Hypothesis

Hypothesis
The distribution of clauses is determined by the same semantic
properties as the distribution of nouns (cf. Koenig and Davis 2001)

Not properties dependent on having propositional content
(White and Rawlins, 2017, 2018)

Intuition
Predicates that take clauses characterize neo-Davidsonian
eventualities, like any other verb. (Kratzer 2006; Hacquard 2006; Moulton 2009;
Anand and Hacquard 2013, 2014; Rawlins 2013; Bogal-Allbritten 2016; White and Rawlins 2016b a.o.)
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Case study

Question
How direct is the relationship between content-dependent
properties and syntactic distribution?

Focus
Two content-dependent properties – factivity and veridicality – that
are argued to determine selection of interrogatives & declaratives

Claim
There is no direct relationship between factivity and veridicality
(qua semantic properties) and syntactic distribution

The relationship is mediated by event structural properties.
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Outline

Introduction

Veridicality and distribution
Predicting responsivity from veridicality

Measuring syntactic distribution
Measuring veridicality inferences
Predicting responsivity

Predicting distribution from veridicality
Expanded measure of veridicality
Predicting distribution

Case study: decision predicates
Interpretation of embedded questions
Data and proposal
Implementation

Conclusion
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Veridicality and distribution



Veridicality and factivity

Veridicality
A verb v is veridical iff np v s entails s Karttunen 1971a; Egré 2008; Karttunen 2012;

Spector and Egré 2015 a.o.

(1) a. Jo knew that Bo was alive→ Bo was alive
b. Jo proved that Bo was alive→ Bo was alive

Factivity
A verb v is factive iff np v s presupposes s Kiparsky and Kiparsky 1970; Karttunen

1971b et seq

(2) a. Jo didn’t know that Bo was alive→ Bo was alive
b. Jo didn’t prove that Bo was alive ̸→ Bo was alive
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Veridicality/factivity and responsivity

Responsivity (Lahiri, 2002)

A verb is responsive iff it takes interrogatives and declaratives see also
Karttunen 1977b,a; Groenendijk and Stokhof 1984 et seq

(3) a. Jo knew that Bo was alive.
b. Jo knew whether Bo was alive.

Generalization
A verb is responsive iff {factive (Hintikka, 1975) / veridical (Egré, 2008)}
see also George 2011; Uegaki 2012, 2015; cf. Beck and Rullmann 1999; Spector and Egré 2015

(4) a. Jo knew {that, whether} Bo was alive.
b. Jo thought {that, *whether} Bo was alive.
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Predicted correlation

Factivity/Veridicality
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Testing correlation

Measurement of syntactic distribution
MegaAcceptability dataset (White and Rawlins, 2016a)

Measurement of veridicality
MegaVeridicality dataset (White and Rawlins, 2018)
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Predicting responsivity from
veridicality



MegaAttitude materials

Ordinal (1-7 scale) acceptability ratings

for
1000 clause-embedding verbs

×
50 syntactic frames
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Verb selection
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Sentence construction

Challenge
Automate construction of a very large set of frames in a way that is
sufficiently general to many verbs

Solution
Construct semantically bleached frames using indefinites

(5) Examples of responsives
a. know + NP V {that, whether} S
Someone knew {that, whether} something happened.

b. tell + NP V NP {that, whether} S
Someone told someone {that, whether} something happened.

14



Frame construction

Syntactic type

NP PP S

[ NP] [ PP] [ NP S] [ S][ NP PP] [ PP S]

DO No DO COMP TENSE

that [+Q] for ∅

whether which NP

[+FIN] [-FIN]

-ed would to ∅ -ing

15
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Data collection

• 1,000 verbs × 50 syntactic frames = 50,000 sentences

• 1,000 lists of 50 items each
• Each verb only once per list
• Each frame only once per list

• 727 unique Mechanical Turk participants
• Annotators allowed to do multiple lists, but never the same list
twice

• 5 judgments per item
• No annotator sees the same sentence more than once
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Task

Turktools (Erlewine and Kotek, 2015)

18



Validating the data

Interannotator agreement
Spearman rank correlation calculated by list on a pilot 30 verbs

Pilot verb selection
Same verbs used by White (2015); White et al. (2015), selected based
on Hacquard and Wellwood’s (2012) attitude verb classification

1. Linguist-to-linguist
median: 0.70, 95% CI: [0.62, 0.78]

2. Linguist-to-annotator
median: 0.55, 95% CI: [0.52, 0.58]

3. Annotator-to-annotator
median: 0.56, 95% CI: [0.53, 0.59]

19
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Results
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What about frequency?

Question
Did you really need to go to all this trouble to collect acceptability
judgments? Couldn’t you just get it from frequency distributions?

Answer 1
Necessarily yes. Because learners do it.

Answer 2
Practically no. At least not without a model that’s effectively
equivalent to whatever the learner uses.
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Corpus data

42.8 million verb-subcategorization frame pairs extracted from
Parsed ukWaC (PukWaC) (Baroni et al., 2009)

2 billion word web corpus constructed from crawl of the .uk domain,
dependency parsed with MaltParser (Nivre et al., 2007)

NN VBD VVN IN PPS VHD VVN SENT
I was amazed that they had come .

ROOT

SUBJ VC

OBJ

SUBJ VC
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Subcategorization frame extraction

Features extracted see White 2015 for details

1. Form of the matrix subject (i.e. potentially expletive?)

2. Tense/aspect for matrix verb (and all matrix auxiliaries)
3. Whether there is direct or indirect NP objects
4. Whether there are other PP complements
5. Whether there is a clausal complement, and if so...

5.1 ...what the complementizer is (if any)
5.2 ...what the WH word is (if any)
5.3 ...what the subject is (if any)
5.4 ...tense/aspect for the embedded verb (and all auxiliaries)
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Acceptability v. PukWaC corpus counts
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Acceptability v. corpus counts

Question
Is this due to noisy parsing and extraction?

Question
Probably not; purportedly very clean (but smaller) frequency
datasets like VALEX (Korhonen et al., 2006) actually have slightly worse
cross-validated r2
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Acceptability v. VALEX corpus counts
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Acceptability v. VALEX corpus counts
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Acceptability v. VALEX corpus counts
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Predicting acceptability

Note #1
Does not imply that frequency and acceptability unrelated

Note #2
Acceptability is derived in part from frequency data

Point
Frequency and acceptability are likely not related at the level of
syntactic structure

Solution
We likely need some sort of abstraction that clears away noise
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Acceptability v. corpus-based type signatures
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Acceptability v. corpus-based type signatures
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Acceptability v. corpus-based type signatures
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Testing correlation

Measurement of syntactic distribution
MegaAcceptability dataset (White and Rawlins, 2016a)

Measurement of veridicality
MegaVeridicality dataset (White and Rawlins, 2018)
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Task

...you will be given a statement and a question related to that
statement. Your task will be to respond yes, maybe or maybe not, or
no to the question, assuming that the statement is true. (cf. Karttunen
et al., 2014)
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Stimuli

517 verbs from the MegaAttitude based on their acceptability in the
[NP _ that S] and [NP was _ed that S] frames

• 348 verbs only in the active frame
• 142 only in the passive frame
• 27 in both

1,088 items randomly partitioned into 16 lists of 68
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Stimuli

Active

(6) a. Someone thought that a particular thing happened.
b. Someone didn’t think that a particular thing happened.

Passive

(7) a. Someone was told that a particular thing happened.
b. Someone wasn’t told that a particular thing happened.

(8) a. Someone was bothered that a particular thing happened.
b. Someone wasn’t bothered that a particular thing happened.
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Participants

160 unique participants through Amazon’s Mechanical Turk

• 10 ratings per item...
• ...given by 10 different participants
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Raw responses
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Normalization

Transformation (roughly)
Map each verb to single two-dimensional point by assigning -1 to no,
0 to maybe, and 1 to yes, then take the mean.

Normalize
Use ridit scoring to normalize for how often a particular participant
gives a particular response. (Similar to z-scoring.)
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Relating factivity, veridicality, and question-taking

Question
Do factivity/veridicality positively correlate with question-taking?
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Correlation: factivity and question-taking
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Measure of question selection

Acceptability of [ CP[+Q]]
For a particular verb, maximum acceptability over all frames that
contain an interrogative complement.

Intuition
If a verb is acceptable in some frame that contains an interrogative
complement, it is acceptable with interrogatives.
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Correlation: veridicality and question-taking
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Correlation: veridicality and question-taking

Veridicality

A
c

c
e

p
ta

b
il

it
y

 o
f 

[_
 C

P
[+

Q
]]

68



Correlation: veridicality and question-taking
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What’s going on?

Question
How could we have gotten the direction of correlation so wrong?

Two hypotheses

1. Previous analyses were biased by verb frequency.
2. Analysis missed subregularities due to verb class.
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Correlation: factivity with all verbs
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Correlation: factivity with high-frequency verbs
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Correlation: veridicality with all verbs
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Correlation: veridicality with high-frequency verbs
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How could we have gotten the direction of correlation so wrong?

Two hypotheses

1. Previous analyses were biased by verb frequency.
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Moving forward

Limitation
Because prior generalizations focus on finite interrogatives &
declaratives, prior dataset covered only finite complements.

But there is substantial variability in the veridicality inferences
generated with different complements – even for the same verb.

Aim
Measure veridicality inferences across a wide variety of syntactic
contexts.
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Moving forward

(9) a. Joi forgot that shei bought tofu.

→ Jo bought tofu.
b. Jo forgot to buy tofu. → Jo didn’t buy tofu.

(10) a. Joi knew that shei bought tofu. → Jo bought tofu.
b. Jo knew to buy tofu. ̸→ Jo {bought, didn’t buy} tofu.
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Predicting distribution from
veridicality



Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability
based on acceptability in 7 frames involving infinitival complements:

• [NP _ed for NP to VP] (184 verbs)
• [NP _ed NP to VP[+ev]] (197 verbs)
• [NP _ed NP to VP[-ev]] (128 verbs)
• [NP was _ed NP to VP[+ev]] (278 verbs)
• [NP was _ed NP to VP[-ev]] (256 verbs)
• [NP _ed to VP[+ev]] (217 verbs)
• [NP _ed to VP[-ev]] (165 verbs)

2,850 items randomly partitioned into 50 lists of 57
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Stimuli

NP _ed for NP to VP

(11) a. Someone wanted for a particular thing to happen.
b. Someone didn’t want for a particular thing to happen.

NP _ed NP to VP[+ev]

(12) a. Someone told a particular person to do a particular thing.
b. Someone didn’t tell a particular person to do a particular thing.

NP _ed NP to VP[-ev]

(13) a. Someone believed a particular person to have a particular thing.
b. Someone didn’t believe a particular person to have a particular thing.
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Stimuli
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Stimuli

Expand MegaVeridicality with 603 verb types from MegaAcceptability
based on acceptability in 7 frames involving infinitival complements:
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NP _ed for NP to VP
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NP _ed NP to VP[+ev]
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b. Someone didn’t tell a particular person to do a particular thing.

NP _ed NP to VP[-ev]

(13) a. Someone believed a particular person to have a particular thing.
b. Someone didn’t believe a particular person to have a particular thing.
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Stimuli

NP _ed to VP[+ev]

(16) a. A particular person decided to do a particular thing.
b. A particular person didn’t decide to do a particular thing.

NP _ed to VP[-ev]

(17) a. A particular person hoped to have a particular thing.
b. A particular person didn’t hope to have a particular thing.
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Results

Note
Mixed-effects ordinal model-based normalization to control for
variability in how participants use the response scale. (see Agresti, 2014)

Applied to both veridicality and acceptability judgments.

Intuition
Like z-scoring, but better models response behavior.
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Results

Example: x-axis
A particular person didn’t forget to do a particular thing.

Example: y-axis
A particular person forgot to do a particular thing.
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What about frequency?

Question
Did you really need to go to all this trouble to collect veridicality
judgments? Couldn’t you just get it from annotated corpora?

Answer 1
Necessarily yes. Because learners do it.

Answer 2
Practically no. At least not without a model that’s effectively
equivalent to whatever the learner uses.
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What about frequency?

Veridicality corpus annotations

1. FactBank (Saurí and Pustejovsky, 2009, 2012)

2. UW (Lee et al., 2015)

3. MEANTIME (Minard et al., 2016)

4. UDS (White et al., 2016; Rudinger et al., 2018)

Current state-of-the-art
Hybrid linear-chain/tree structured neural model. (Rudinger et al., 2018)
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Predicting veridicality
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Sentence True Predicted

someone faked that something happened . -3.15 0.86
someone was misinformed that something happened . -2.62 1.37
someone neglected to do something . -3.07 -0.02
someone pretended to have something . -2.96 0.05
someone was misjudged to have something . -2.46 0.55
someone forgot to have something . -3.18 -0.17
someone neglected to have something . -2.93 0.07
someone pretended that something happened . -2.11 0.86
someone declined to do something . -3.18 -0.22
someone was refused to do something . -3.16 -0.22
someone refused to do something . -3.12 -0.20
someone pretended to do something . -3.02 -0.11
someone disallowed someone to do something . -2.56 0.34
someone was declined to have something . -2.36 0.55
someone declined to have something . -3.12 -0.23
someone did n’t hesitate to have something . 1.84 -0.96
someone ceased to have something . -2.22 0.57
someone did n’t hesitate to do something . 1.86 -0.92
someone lied that something happened . -1.99 0.78
someone feigned to have something . -3.07 -0.31
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Preliminaries

Goal
Extract patterns of inference – e.g. factive, veridical, or implicative.

Approach
Use an automated method to discover inference patterns across
verbs by decomposing veridical data into underlying factors.

Method
Regularized censored factor analysis with loss weighted by
normalized acceptability and scores constrained to (-1, 1).

Selected number of factors (12) using cross-validation procedure.

(Ask about specifics after the talk.)

112



Preliminaries

Goal
Extract patterns of inference – e.g. factive, veridical, or implicative.

Approach
Use an automated method to discover inference patterns across
verbs by decomposing veridical data into underlying factors.

Method
Regularized censored factor analysis with loss weighted by
normalized acceptability and scores constrained to (-1, 1).

Selected number of factors (12) using cross-validation procedure.

(Ask about specifics after the talk.)

112



Preliminaries

Goal
Extract patterns of inference – e.g. factive, veridical, or implicative.

Approach
Use an automated method to discover inference patterns across
verbs by decomposing veridical data into underlying factors.

Method
Regularized censored factor analysis with loss weighted by
normalized acceptability and scores constrained to (-1, 1).

Selected number of factors (12) using cross-validation procedure.

(Ask about specifics after the talk.)

112



Preliminaries

Goal
Extract patterns of inference – e.g. factive, veridical, or implicative.

Approach
Use an automated method to discover inference patterns across
verbs by decomposing veridical data into underlying factors.

Method
Regularized censored factor analysis with loss weighted by
normalized acceptability and scores constrained to (-1, 1).

Selected number of factors (12) using cross-validation procedure.

(Ask about specifics after the talk.)

112



Preliminaries

Goal
Extract patterns of inference – e.g. factive, veridical, or implicative.

Approach
Use an automated method to discover inference patterns across
verbs by decomposing veridical data into underlying factors.

Method
Regularized censored factor analysis with loss weighted by
normalized acceptability and scores constrained to (-1, 1).

Selected number of factors (12) using cross-validation procedure.

(Ask about specifics after the talk.)

112



Inference patterns

Pattern 8 Pattern 9 Pattern 10 Pattern 11

Pattern 4 Pattern 5 Pattern 6 Pattern 7

Pattern 0 Pattern 1 Pattern 2 Pattern 3

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
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NP was _ed that S
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NP _ed for NP to VP
NP was _ed that S

NP _ed that S

Inference polarity
Matrix polarity negative positive
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Inference patterns
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Inference patterns
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Inference patterns: factivity/veridicality
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Inference patterns: factivity/veridicality
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Inference patterns: factivity/veridicality
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Inference patterns

Pattern 8 Pattern 9 Pattern 10 Pattern 11

Pattern 4 Pattern 5 Pattern 6 Pattern 7

Pattern 0 Pattern 1 Pattern 2 Pattern 3

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

Inference polarity
Matrix polarity negative positive
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Inference patterns
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Inference patterns
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Inference patterns: factivity/veridicality
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Inference patterns: factivity/veridicality
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Inference patterns

Pattern 8 Pattern 9 Pattern 10 Pattern 11

Pattern 4 Pattern 5 Pattern 6 Pattern 7

Pattern 0 Pattern 1 Pattern 2 Pattern 3

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

Inference polarity
Matrix polarity negative positive
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Inference patterns

Pattern 8 Pattern 9 Pattern 10 Pattern 11

Pattern 4 Pattern 5 Pattern 6 Pattern 7

Pattern 0 Pattern 1 Pattern 2 Pattern 3

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

Inference polarity
Matrix polarity negative positive
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Inference patterns

Pattern 8 Pattern 9 Pattern 10 Pattern 11

Pattern 4 Pattern 5 Pattern 6 Pattern 7

Pattern 0 Pattern 1 Pattern 2 Pattern 3

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

Inference polarity
Matrix polarity negative positive
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Inference patterns: implicatives
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Inference patterns: implicatives
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Inference patterns: implicatives
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Inference patterns

Pattern 8 Pattern 9 Pattern 10 Pattern 11

Pattern 4 Pattern 5 Pattern 6 Pattern 7

Pattern 0 Pattern 1 Pattern 2 Pattern 3

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

Inference polarity
Matrix polarity negative positive
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Inference patterns

Pattern 8 Pattern 9 Pattern 10 Pattern 11

Pattern 4 Pattern 5 Pattern 6 Pattern 7

Pattern 0 Pattern 1 Pattern 2 Pattern 3

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

Inference polarity
Matrix polarity negative positive
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Inference patterns

cause
mislead

misinform
show
prove

say
hallucinate

fake
hope
think

believe
imagine

tell
permit

choose
happen
manage
continue

forbid
misjudge
disprove

mean
convince

know
persuade

turn out
start
help

realize
allow

remember
pretend

refuse
neglect

fail
forget

surprise

0 1 2 3 4 5 6 7 8 9 10 11

Pattern
−1.0 −0.5 0.0 0.5 1.0 134



Predicting distribution from inference

Question
Can we predict syntactic distribution directly from veridicality
inference patterns?

Approach
Learn optimal mapping from veridicality inference patterns to
syntactic distribution using cross-validated ridge regression.

Finding
Across all frames in MegaAcceptability, this mapping explains about
20% of the variance in the acceptability judgments.
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Predicting distribution from inference
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Predicting distribution from inference
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Predicting distribution from inference

Points

1. Some amount of information about syntactic distribution
carried in veridicality inferences.

1.1 Caveat: It’s hard to tell how much explanation is driven by
syntactic information encoded in the patterns.

2. Not nearly enough information to base a generalization on.
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Inference patterns

Pattern 8 Pattern 9 Pattern 10 Pattern 11

Pattern 4 Pattern 5 Pattern 6 Pattern 7

Pattern 0 Pattern 1 Pattern 2 Pattern 3

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

NP was _ed to VP[−ev]
NP _ed to VP[−ev]

NP was _ed to VP[+ev]
NP _ed to VP[+ev]

NP _ed NP to VP[−ev]
NP _ed NP to VP[+ev]

NP _ed for NP to VP
NP was _ed that S

NP _ed that S

Inference polarity
Matrix polarity negative positive
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Predicting distribution from inference

Points

1. Some amount of information about syntactic distribution
carried in veridicality inferences.
1.1 Caveat: It’s hard to tell how much explanation is driven by

syntactic information encoded in the patterns.

2. Not nearly enough information to base a generalization on.

141



Predicting distribution from inference
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Exploratory analysis

Question
What drives the relationship between veridicality and distribution?

Possibility
The relationship is indirect, mediated by underlying features that
explain both distribution and veridicality.

Motivation
Relationship may be mediated by non-contentful properties of
contentful events Kratzer 2006; Hacquard 2006; Moulton 2009; Anand and Hacquard 2013,
2014; Rawlins 2013; Bogal-Allbritten 2016; White and Rawlins 2016b a.o.

Approach
Use Uniform Manifold Approximation and Projection (UMAP) to
visualize the topological structure of the distribution and veridicality
data. McInnes and Healy 2018
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Exploratory analysis

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

143



Exploratory analysis
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Exploratory analysis
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Interim discussion

Finding
Fine-grained clusters like verb classes among ‘action’ verbs

Question
What could explain distributional properties like responsivity?

Possibility 1
Verb class-specific rules (possibly sensitive to content-dependent
properties, like veridicality and factivity).

Possibility 2
More abstract semantic properties relevant to thematic roles – e.g.
affectedness, existence, creation/destruction, ...
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Case study: decision predicates



Why decision predicates?

Observation
Decision predicates are one of multiple classes of responsive verbs
that are not veridical (Beck and Rullmann, 1999; Lahiri, 2002; Egré, 2008)

(18) a. Jo told Mo that Bo was alive. ̸→ Bo was alive.
b. Jo told Mo whether Bo was alive.

(19) a. Jo and Mo agreed that Bo was alive. ̸→ Bo was alive.
b. Jo and Mo agreed on whether Bo was alive.

(20) a. Joi decided proi to leave. ̸→ Jo will leave.
b. Joi decided whether proi to leave.
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Why decision predicates?

Decide is part of a nontrivial class of Change-of-mental-state (CoMS)
responsives not captured by standard theories of responsivity

(21) decide, judge, estimate, determine, assess, conclude, resolve,
choose, assess, evaluate, appraise, rate, select, infer, diagnose,
opt, elect

Minimal pair
Change-of-mental-state (CoMS) decide v. stative intend

(22) a. Jo decided (whether) to go out.
b. Jo intended (*whether) to go out.
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Why decision predicates?

Overarching claim
Responsivity is licensed by CoMS

• decide is Q-agnostic because it is CoMS
• intend is Q-rejecting because it is not (and because no other
lexical property of intend licenses Q-agnosticism)

Argument outline

1. Interpretation of decision predicates with embedded questions
is not captured by standing theories.

2. Capturing the interpretations of decision predicates must make
explicit reference to the structure of selection events.
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Two notions of veridicality

P-veridicality
A verb V is (P-)veridical iff ∀x,p : JVKw@(x,p)→ p(w@)

(23) Jo knew that Bo was alive→ Bo was alive

Q-veridicality
A verb V is Q-veridical iff ∀x,Q : JVKw@(x,Q)→ JVKw@(x, answ@

(Q))

(24) Jo knew whether Bo was alive
→ Jo knew the true answer to “was Bo alive?”

A verb V is Q-nonveridical if it is not Q-veridical.
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Veridicality and interpretation

Spector and Egré’s (2015) observation
High correlation between Q-veridicality and P-veridicality

Spector and Egré’s (2015) proposal
Q-veridicality is derived from P-veridicality
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Veridicality and interpretation

Spector and Egré’s (2015) formalization
When a Q-agnostic predicate takes a question Q, it relates an
attitude holder to some possible (complete) answer to Q
(cf. Hamblin, 1973; Groenendijk and Stokhof, 1984; Beck and Rullmann, 1999; Lahiri, 2002)

∀x : JVKw@(x,Q)→ ∃p ∈ Q : JVKw@(x,p)

But if a verb V is P-veridical, then...

[
∀x,p′ : JVKw@(x,p′) → p′(w@)∧
∃p ∈ Q : JVKw@(x,p)

]
=⇒ ∃p′′ ∈ Q : p′′(w@) ∧ JVKw@(x,p′′)
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Moving forward

System
Adopt Spector and Egré’s proposal that embedded interrogatives
denote possible complete answers (exhaustified Hamblin Qs)

Goal
Some explanation of Q-agnostic predicates that are neither
P-veridical nor Q-veridical – e.g. CoMS predicates
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Possible v. true answers

Hamblin (1973) questions
Sets of possible answers (cf. Beck and Rullmann, 1999; Spector and Egré, 2015)

(25) a. Jwhether Jo leftK = λp.p ∈ {JJo leftK,¬JJo leftK}
b. Jwho leftK = λp.∃x : p = λw.JleftKw(x)

Karttunen (1977b) questions
Sets of true answers (cf. Groenendijk and Stokhof, 1984; Heim, 1994)

(26) a. Jwhether Jo leftK = λp.p(w@) ∧ p ∈ {JJo leftK,¬JJo leftK}
b. Jwho leftK = λp.p(w@) ∧ ∃x : p = λw.JleftKw(x)
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The proposal

Plan
Show that...

1. ...Spector and Egré’s proposal makes no wrong predictions
about CoMS verbs, but it undergenerates entailments

2. ...to strengthen their predictions without overgenerating,
reference to CoMS is necessary
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Two contexts

Selecting Alternating

decide to ✓ ✓
decide whether to ✓ #
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Context 1: selecting

Selecting contexts
decider selects an intention from set of possible intentions

(27) a. Before 3pm, Jo was considering whether to leave.
b.→ It’s false that Jo intended to leave before 3pm.
c. → It’s false that Jo intended not to leave before.

(28) At 3pm, Jo decided to leave at 5pm.

decision1{
intend p
intend ¬p

}
intend p
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Context 2: alternating

Alternating contexts
decider changes intention from mutually exclusive intention

(29) At 3pm, Jo decided to leave at 5pm.

(30) At 4pm, Jo changed her mind and decided not to leave.

decision1 decision2{
intend p
intend ¬p

}
intend p intend ¬p
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Two contexts

Selecting Alternating

decide to ✓ ✓
decide whether to

✓ #
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Selecting v. switching contexts

Possibility
Given only the (prototypical) selecting contexts...

(31) At 3pm, Jo decided to leave at 5pm.
a.→ Jo intended to leave after 3pm.
b. ?−→ It’s F that Jo intended to leave before 4pm
c. ?−→ It’s F that Jo intended not to leave before 4pm

decision1{
intend p
intend ¬p

}
intend p
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Selecting v. switching contexts

Conclusion
The availability of alternating contexts suggests...

(32) At 4pm, Jo decided not to leave at 5pm.
a.→ Jo intended not to leave after 4pm.
b.→ It’s F that Jo intended to leave before 4pm
c. ̸→ It’s F that Jo intended not to leave before 4pm

decision1 decision2{
intend p
intend ¬p

}
intend p intend ¬p
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An initial try

A CoMS denotation
Suggests a very straightforward CoMS denotation for decide to
(simplified to capture just entailments of interest)

(33) Jdecide SKt = λx.¬intend(x, JSK, < t) ∧ intend(x, JSK,≥ t)
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Question embedding and CoMS

Question
What predictions does Spector and Egré’s (2015) proposal make?

(34) Jo decided whether to leave.

Answer 1
Predicts everything correctly for post-states

(35) Either Jo intended to leave or she intended not to leave.
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Question embedding and CoS

Question
What predictions does Spector and Egré’s (2015) proposal make?

(36) At 4pm, Jo decided whether to leave at 5pm.

Answer 2
For pre-states, where it makes predictions, they are correct

(37) Before 4pm, either it’s false that Jo decided to leave at 5pm or
it’s false that she decided not to leave at 5pm.

(38) ∃p ∈ Q : ¬intend(x,p, < t) ∧ intend(x,p,≥ t)

But this prediction is too weak
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Question embedding and CoMS

Observation
While decide to is licensed in selecting and alternating contexts,
decide whether to is only licensed in selective contexts

(39) a. Before 3, Jo intended neither to leave nor not to.
b. At 3, Jo decided whether to leave.

(40) a. Before 4, Jo intended either to leave or not to.
b.#At 4pm, Jo decided whether to leave at 5pm

Intuition
(40-b)→ Jo have no intention with respect to leaving before 4pm
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Two contexts

Selecting Alternating

decide to ✓ ✓
decide whether to

✓ #
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Question embedding and CoMS

Consequence
We need (42), rather than (41) for CoMS embedded questions.

(41) ∃p ∈ Q : ¬intend(x,p, < t) ∧ intend(x,p,≥ t)

(42) ∀p ∈ Q : ¬intend(x,p, < t) ∧ ∃p ∈ Q : intend(x,p,≥ t)

Observation
The pre-state conjunct is equivalent to the negation of the
post-state conjunct (modulo tense)

(43) ∀p ∈ Q : ¬intend(x,p)↔ ¬∃p ∈ Q : intend(x,p)
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Question embedding and CoMS

Idea
Apply Spector and Egré’s (2015) proposal to each conjunct

(44) Q = Jwhether SK = {JSK,¬JSK} = {p,¬p}

(45) Jdecide whether SKt = λx.¬intend(x,Q, < t) ∧ intend(x,Q,≥ t)

(46) Jdecide whether SKt = λx.¬∃p ∈ Q : intend(x,p, < t)∧
∃p ∈ Q : intend(x,p,≥ t)
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Question embedding and CoMS

Problem
Mysterious why we shouldn’t be able to do this for intend

(47) a. Jo hasn’t decided whether to go out.
b.*Jo didn’t intend whether to go out.

Jintend whether SK = λx.intend(x, Jwhether SK)
= λx.∃p ∈ Jwhether SK : intend(x,p)
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Question embedding and CoS

Observation
Problem doesn’t arise for CoMS veridicals

(48) a. Jo doesn’t figure out (whether) Bo left.
b. Jo doesn’t know (whether) Bo left.

Jknow whether SK = λx.know(x, Jwhether SK)
= λx.∃p ∈ Jwhether SK : know(x,p)
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Question embedding and CoMS

Upshot
Only target certain event types (e.g. intentions) in CoMS structure

Proposal
Make interrogative-taking dependent on CoMS
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Implementation

Minimal requirements
For decide to, something of the form in (49)

(49) . . .¬intend(x, JSK, < t) ∧ intend(x, JSK,≥ t)

For decide whether to, something of the form in (50)

(50) . . . ∀p ∈ Q : ¬intend(x,p, < t) ∧ ∃p ∈ Q : intend(x,p,≥ t)
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Implementation

Core idea
Q-agnostic predicates undergo a regular polysemy

Lexical abstraction

Polysemy rules

Lexicon

decide

decideQ decidep
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George’s (2011) Twin Relations Theory

Goal
A polysemy approach for Q-agnostics

Elementary relations

Lexical templating

Lexicon

R∀ R∃

Rques Rprop
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Lexical templates

Proposition-taking variant passes p to elementary relations

Rprop ≡ λw.λx.λp.R∀(x,p,w) ∧ R∃(x,p,w)

Question-taking variant passes p ∈ Q to elementary relations

Rques ≡ λw.λx.λQ.∀p ∈ Q : R∀(x,p,w) ∧ ∃p ∈ Q : R∃(x,p,w)

Veridicality arises from R∀

know∀(x,p,w) ≡ believe(x,p,w)→ p(w)

181



Rprop corresponds to the form we need for decide to, and
Rques corresponds to the form we need for decide whether to

(51) decide∀ = ¬intend

(52) decide∃ = intend

R∀ = Rpre characterizes pre-states
R∃ = Rpost charatcerizes post-states
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Basic approach

Hacquard’s (2010) neo-Davidsonian event content approach
(cf. Kratzer, 2006; Moulton, 2009; Bogal-Allbritten, 2016)

(53) con(e) = {w : w is compatible with the contents of e}

(54) J[V S]VPK = λe.PV(e) ∧ ∀w ∈ con(e) : JSK(w)
Champollion’s (2015) verb-as-event-quantifier approach

(55) JVPK = λf.∃e : f(e) ∧ . . .

Attitude denotations

(56) J[V S]VPK = λf.∃e : PV(e) ∧ f(e) ∧ ∀w ∈ con(e) : JSK(w)
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Implementation

epre epost

{intend p1, intend p2, ...} intend pi
inquisitive informative

decide

content content
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Defining decision

Define decision to relate a pre-state and a post-state

(57) decision(e, epre, epost) ≡ e is a decision with
pre-state epre and post-state epost

Define constraint on inquisitive pre-state

(58) Rpre(e,p) = ¬∀w ∈ con(e) : p(w)

Define constraint on informative post-state

(59) Rpost(e,p) = ∀w ∈ con(e) : p(w)
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Defining lexical templates

As expected for a change-of-state verb

(60) ∀e,p : Rpre(e,p)←→ ¬Rpost(e,p)

Extend George’s lexical templates to events

(61) a. JdecidepropK = Rprop(decision) = (62-a)
b. JdecidequesK = Rques(decision) = (62-b)

(62) a. λp.λf.∃e, epre, epost : decision(e, epre, epost) ∧ f(e)
∧Rpre (p)(epre ) ∧ Rpost(p)(epost)

b. λQ.λf.∃e, epre, epost : decision(e, epre, epost) ∧ f(e)
∧∀p ∈ Q : Rpre (p)(epre )
∧∃p ∈ Q : Rpost(p)(epost)
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Full denotations

When decide takes a declarative...

JJo decideprop SK = ∃e, epre, epost : decision(e, epre, epost) ∧ agent(j, e)

∧¬∀w ∈ con(epre) : JSK(w)
∧∀w ∈ con(epost) : JSK(w)

When decide takes an interrogative...

JJo decideques ?SK = ∃e, epre, epost : decision(e, epre, epost) ∧ agent(j, e)
∧∀p ∈ J?SK : ¬∀w ∈ con(epre) : p(w)
∧∃p ∈ J?SK : ∀w ∈ con(epost) : p(w)
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Embedded modality

Remaining question
Where does the intention entailment come from?

Possible answer
Decision pre-states just are intentional states

Answer
Modality in the embedded clause (Bhatt, 1999; Grano, 2012; Wurmbrand, 2014; White, 2014)
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Embedded modality

Evidence
Always(?) intention for infinitivals

(63) Jo {determined, decided, chose} whether to leave.

Otherwise dependent on content of finite complement

(64) a. Jo decided whether she would leave.
b. Jo decided whether Bo could leave.
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Wrapping up

Question
Why would pre-state entailments be like veridicality entailments?

Relevant observation
Pre-state entailments are generally backgrounded (cf. start, stop)
(Roberts, 1996; Simons, 2001; Abusch, 2002; Simons et al., 2010; Abusch, 2010; Abrusán, 2011; Romoli, 2011; Anand and Hacquard, 2014)
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A generalization

Tentative generalization
No monomorphemic verb characterizes a relation between an
informative pre-state and an inquisitive post-state (*undecide)

Possible exception: forget

Relevance
Suggests an asymmetry between pre-states and post-states that we
don’t currently encode

Suggestion
Whatever gives rise to pre-state backgrounding for other CoS
predicates also gives rise to this asymmetry
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Future directions

Direction 1
Reducing the relationship between veridicality and Q-agnosticism to
a relationship between CoMS and Q-agnosticism

Direction 2
Explaining remaining nonveridicals in terms of event structure
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Reducing to CoMS

Observation
Many verbal veridicals besides the stative know are CoMS

remember, forget, discover, find out, figure out, realize, recognize, ...

Timid reduction
Most verbal veridicals explained by CoMS; know stipulated

Aggressive reduction
Know has a bipartite structure involving a knowledge state (fact
contents) and a belief state (proposition contents) (Kratzer, 2002)
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Conclusion



Overarching question

How are a verb’s semantic properties related to its
syntactic distribution? Gruber 1965; Fillmore 1970; Zwicky 1971; Jackendoff 1972;

Grimshaw 1979, 1990; Pesetsky 1982, 1991; Pinker 1989; Levin 1993

Semantic
Properties
+ telic
− durative
− stative

. . .



Syntactic
Distribution

[ NP]
[ S]
[ VP]
. . .


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What could matter?

Factors claimed to affect the distribution of nominals
Sensitive to event structural properties like stativity, telicity,
durativity, causativity, transfer, etc. (see Levin and Rappaport Hovav 2005)

Factors claimed to affect the distribution of clauses
Sensitive to ‘content-dependent’ properties like representationality,
preferentiality, factivity/veridicality, communicativity, etc. Bolinger 1968;
Hintikka 1975; Hooper 1975; Stalnaker 1984; Farkas 1985; Villalta 2000, 2008; Kratzer 2006; Egré 2008;

Scheffler 2009; Moulton 2009; Anand and Hacquard 2013; Rawlins 2013; Portner and Rubinstein

2013; Anand and Hacquard 2014; Spector and Egré 2015; Bogal-Allbritten 2016; Theiler et al. 2017
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Overarching Hypothesis

Hypothesis
The distribution of clauses is determined by the same semantic
properties as the distribution of nouns (cf. Koenig and Davis 2001)

Not properties dependent on having propositional content
(White and Rawlins, 2017, 2018)

Intuition
Predicates that take clauses characterize neo-Davidsonian
eventualities, like any other verb. (Kratzer 2006; Hacquard 2006; Moulton 2009;
Anand and Hacquard 2013, 2014; Rawlins 2013; Bogal-Allbritten 2016; White and Rawlins 2016b a.o.)
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Case study

Question
How direct is the relationship between content-dependent
properties and syntactic distribution?

Focus
Two content-dependent properties – factivity and veridicality – that
are argued to determine selection of interrogatives & declaratives

Claim
There is no direct relationship between factivity and veridicality
(qua semantic properties) and syntactic distribution

The relationship is mediated by event structural properties.
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Thanks!
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