THE SOURCE OF NONFINITE TEMPORAL INTERPRETATION

ELLISE MOON AND AARON STEVEN WHITE, UNIVERSITY OF ROCHESTER

CENTRAL QUESTION

Which aspects of semantic interpretation are due to predicates' denotations and which are due to the denotations of their arguments?

CENTRAL QUESTION

Which aspects of semantic interpretation are due to predicates' denotations and which are due to the denotations of their arguments?

Focus: temporal interpretation in English nonfinite embedded clauses.

(Stowell, 1982; Landau, 2001; Wurmbrand, 2001, 2014; Grano, 2012, 2017; Pearson, 2016)

I. Jo wanted to leave.

I. Jo wanted to leave.

I. Jo wanted to leave.

I. Jo wanted to leave.

2. Jo regretted leaving.

I. Jo wanted to leave.

2. Jo regretted leaving.

I. Jo wanted to leave.

2. Jo regretted leaving.

3. Jo remembered leaving.

3. Jo remembered leaving.

4. Jo remembered to leave.

5. Jo claimed to leave.

What is the source of this temporal orientation?

CHALLENGE

Are predicates like remember and claim just idiosyncratic?

CHALLENGE

Are predicates like remember and claim just idiosyncratic?

Bird's-eye view of temporal orientation across the lexicon

 Collect a lexicon-scale dataset of clause-embedding verbs with different possible embedded structures

- Collect a lexicon-scale dataset of clause-embedding verbs with different possible embedded structures
- Formalize possible theoretical frameworks as parameters in a computational model and test on data

Introduction

- Introduction
- Three Hypotheses

- Introduction
- Three Hypotheses
- Data Collection

- Introduction
- Three Hypotheses
- Data Collection
- Model Design

- Introduction
- Three Hypotheses
- Data Collection
- Model Design
- Analysis and Results

I. Lexical: Temporal orientation is due to the predicate

10

I. Lexical: Temporal orientation is due to the predicate

Jo regretted leaving

[regret]
$$\rightarrow$$
 t_(regret) < t_(leave)

(Pearson, 2016)

10
2. Structural: Temporal orientation is due to the structure of the argument selected by the predicate

(Stowell, 1982; Landau, 2001; Wurmbrand, 2001, 2014; Grano, 2012)

Ш

2. Structural: Temporal orientation is due to the structure of the argument selected by the predicate

Jo regretted leaving

$$\begin{bmatrix} VP \\ \uparrow \\ leave -ing \end{bmatrix} \rightsquigarrow t_{(regret)} < t_{(leave)}$$

Ш

(Stowell, 1982; Landau, 2001; Wurmbrand, 2001, 2014; Grano, 2012)

3. Mixed: temporal orientation depends on both the predicate and argument type.

3. Mixed: temporal orientation depends on both the predicate and argument type.

Jo remembered leaving. [remember] $\rightarrow t_{(remember)} < t_{(leave)}$

TALK OUTLINE

- Introduction
- Three Hypotheses

TALK OUTLINE

- Introduction
- Three Hypotheses
- Data Collection

GOAL

A way to capture temporal orientation across different possible verb/structure pairings

GOAL

A way to capture temporal orientation across different possible verb/structure pairings

GOAL

A way to capture temporal orientation across different possible verb/structure pairings

REQUIRES

A bleaching method for acceptability judgements, following White and Rawlins 2016

Jo wanted to leave in the future.

*Jo will want to leave in the past.

temporal adverb phrase

- Jo wanted to leave in the future.
- *Jo will want to leave in the past.

tense manipulation temporal adverb phrase

Jo wanted to leave in the future.

*Jo will want to leave in the past.

tense manipulation temporal adverb phrase

- Jo wanted to leave in the future.
- *Jo will want to leave in the past.

future-oriented

past-oriented

NP ____ doing something

Someone <u>regretted</u> doing something.

NP _____ to do something

Someone <u>wanted</u> to do something.

NP _____ to have something

Someone loved to have something.

NP was _____ to do something

Someone was told to do something.

(Pesetsky 1991, Moulton 2009)

NP was _____ to have something

Someone was <u>believed</u> to have something.

2208 verb/complement pairs in 2 orientations

- 2208 verb/complement pairs in 2 orientations
- Semantically bleached 3rd person singular subject

- 2208 verb/complement pairs in 2 orientations
- Semantically bleached 3rd person singular subject
- Lists of 48 sentences, with even distribution of orientations and randomized item order

- 2208 verb/complement pairs in 2 orientations
- Semantically bleached 3rd person singular subject
- Lists of 48 sentences, with even distribution of orientations and randomized item order
- I0 acceptability judgements per sentence from 869 annotators on Mechanical Turk

Someone knew to do something in the future.

verb Someone knew to do something in the future.

verb complement Someone knew to do something in the future.

verb complement Someone knew to do something in the future.

verbcomplementSomeone knew to do something in the future.

verbcomplementSomeone knew to do something in the future.

Someone will wish to have something in the past.

verb

Someone will wish to have something in the past.

verb complement

Someone will wish to have something in the past.

verb complement

Someone will wish to have something in the past.

verb complement

Someone will wish to have something in the past.

past-oriented

verb complement

Someone will wish to have something in the past.

past-oriented

Future-oriented

Past-oriented

Future-oriented

II. future-oriented predicates	I. predicates which permit both orientations

Future-oriented

II. future-oriented predicates	I. predicates which permit both orientations	
III. simultaneous predicates (Wurmbrand 2014)	IV. past-oriented predicates	
Past-oriented		

ł

TALK OUTLINE

- Introduction
- Three Hypotheses
- Data Collection

TALK OUTLINE

- Introduction
- Three Hypotheses
- Data Collection
- Model Design

27

 A way to capture temporal orientation across different possible verb/structure pairings

- A way to capture temporal orientation across different possible verb/structure pairings
- A way to model our hypotheses relative to this data

(White and Rawlins 2016)

Predicate

(White & Rawlins 2016)

0 1 2 3 4 Number of verb types

Number of structure types

Number of structure types

Verb	Complement	Future Acc.	Past Acc.
abhor	NP Ved VPing	-0.503955	0.413169
abhor	NP was Ved to VP[+eventive]	0.134924	-1.559801
absolve	NP Ved to VP[+eventive]	0.948428	-2.079783
accept	NP Ved VPing	4.774069	1.883071
accept	NP Ved to VP[-eventive]	2.434219	-1.854628
accept	NP was Ved to VP[+eventive]	2.946932	-2.002958
acclaim	NP Ved VPing	-2.137957	0.221483
acclaim	NP Ved to VP[+eventive]	-2.549958	-0.554269
acclaim	NP was Ved to VP[-eventive]	1.382240	-0.742686
add	NP Ved VPing	3.664288	-3.777042
add	NP Ved to VP[+eventive]	0.503324	-0.172519
add	NP was Ved to VP[+eventive]	1.878762	-2.685818
address	NP Ved VPing	1.876711	3.596447
address	NP was Ved to VP[+eventive]	0.928784	-1.928204
admire	NP Ved VPing	-0.070897	-0.475992
admit	NP Ved VPing	-0.690028	4.566390
admit	NP Ved to VP[+eventive]	-3.257618	0.955866
admit	NP Ved to VP[-eventive]	0.373650	-2.930481
admit	NP was Ved to VP[+eventive]	-1.103509	1.371476
admit	NP was Ved to VP[-eventive]	0.318550	1.463886

Verb	Complement	Future Acc.	Past Acc.	
abhor	NP Ved VPing	-0.503955	0.413169	
abhor	NP was Ved to VP[+eventive]	0.134924	-1.559801	
absolve	NP Ved to VP[+eventive]	0.948428	-2.079783	
accept	NP Ved VPing	4.774069	1.883071	
accept	NP Ved to VP[-eventive]	2.434219	-1.854628	
accept	NP was Ved to VP[+eventive]	2.946932	-2.002958	
acclaim	NP Ved VPing	-2.137957	0.221483	
acclaim	NP Ved to VP[+eventive]	-2.549958	-0.554269	
acclaim	NP was Ved to VP[-eventive]	1.382240	-0.742686	
add	NP Ved VPing	3.664288	-3.777042	
add	NP Ved to VP[+eventive]	0.503324	-0.172519	
add	NP was Ved to VP[+eventive]	1.878762	-2.685818	
address	NP Ved VPing	1.876711	3.596447	
address	NP was Ved to VP[+eventive]	0.928784	-1.928204	
admire	NP Ved VPing	-0.070897	-0.475992	
admit	NP Ved VPing	-0.690028	4.566390	
admit	NP Ved to VP[+eventive]	-3.257618	0.955866	
admit	NP Ved to VP[-eventive]	0.373650	-2.930481	
admit	NP was Ved to VP[+eventive]	-1.103509	1.371476	
admit	NP was Ved to VP[-eventive]	0.318550	1.463886	

TALK OUTLINE

- Introduction
- Three Hypotheses
- Data Collection
- Model Design

33

TALK OUTLINE

- Introduction
- Three Hypotheses
- Data Collection
- Model Design
- Analysis and Results

Number of structure types 0 1 5 5 7

Number of structure types

0 1 2 3 4 5 6 7 8 9 10 11 12 Number of verb types

CONCLUSION

Both constructional and lexical models do fit the data, but in different ways, mixed models less so.

CONCLUSION

Both constructional and lexical models do fit the data, but in different ways, mixed models less so.

These models capture fine-grained information about verbal semantics in areas related to temporality.

CONCLUSION

- Both constructional and lexical models do fit the data, but in different ways, mixed models less so.
- These models capture fine-grained information about verbal semantics in areas related to temporality.
- Lexicon-scale datasets of verb features like this can enable us to empirically test theoretical possibilities.

Thank you!

Data is available at megaattitude.io

REFERENCES

Abusch, Dorit. 1997. Sequence of Tense and Temporal De Re. Linguistics and Philosophy 20:1-50.

An, Hannah Youngeun, and Aaron Steven White. 2020. The lexical and grammatical sources of neg-raising inferences. In Proceedings of the Society for Computation in Linguistics, to appear.

Grano, Thomas. 2012. Control and Restructuring at the Syntax-Semantics Interface. Doctoral Dissertation, University of Chicago.

Grano, Thomas. 2017. The logic of intention reports. Journal of Semantics 34:587-632.

Kratzer, Angelika. 1998. More structural analogies between pronouns and tenses. Proceedings from Semantics and Linguistic Theory, 8:92-110.

Moulton, Kier. 2009. Natural Selection and the Syntax of Clausal Complementation. Doctoral Dissertation, University of Massachusetts Amherst.

Landau, Idan. 2001. Elements of Control: Structure and meaning in infinitival constructions. Dordrecht: Springer Science & Business Media.

Ogihara, Toshiyuki. 1995. The Semantics of Tense in Embedded Clauses. Linguistic Inquiry 26:663-679.

Partee, Barbara H. 1973. Some structural analogies between tenses and pronouns in English. Journal of Philosophy 70:601-609.

Pearson, Hazel. 2016. The semantics of partial control. Natural Language & Linguistic Theory 34:691–738.

Pesetsky, David. 1991. Zero syntax: vol. 2: Infinitives.

Stowell, Tim. 1982. The tense of infinitives. *Linguistic Inquiry* 13:561–570.

White, Aaron Steven, and Kyle Rawlins. 2016. A computational model of S-selection. Semantics and Linguistic Theory 26:641–663.

White, Aaron Steven, and Kyle Rawlins. 2018. The role of veridicality and factivity in clause selection. In Proceedings of the 48th Annual Meeting of the North East Linguistic Society, to appear. Amherst, MA: GLSA Publications.

Wurmbrand, Susi. 2001. Infinitives: Restructuring and clause structure. Berlin: Mouton de Gruyter.

Wurmbrand, Susi. 2014. Tense and aspect in English infinitives. *Linguistic Inquiry* 45:403–447.

APPENDICES

ANNOTATOR INSTRUCTIONS

In this experiment, we are interested in words that talk about things like memories, desires, and other mental states, such as *remember* or *hope*. Specifically, we're interested in what these words tell us about the time the memory or desire is about.

The way we are investigating this is by looking at the "acceptability" of sentences that are made up of words about memories, desires, etc. and times, such as *the future* or *the past*. An "acceptable" sentence is something a native speaker of English would say, even if the situation the sentence describes sounds vague or implausible.

Your task will be to respond about the acceptability of each sentence on a scale from 1 to 7 that will appear under each question, where 1 corresponds to *terrible* and 7 corresponds to *perfect*.

For instance, you might be presented with the sentence *Someone wanted to do something in the future*. In this case you would select a 6 or a 7, since desires are usually about the future.

If the sentence were *Someone will regret doing something in the past*, then you might select 1 or 2, since regrets are also about the future.

And if the sentence were *Someone will imagine doing something in the past*, you might select a number near the middle, since imagining is often about the future, but it's not impossible for it to be about the past.

Try to answer the questions as quickly and accurately as possible, considering whether they present an order of events that makes sense.

