THE SOURCE OF NONFINITE TEMPORAL INTERPRETATION

CENTRAL QUESTION

Which aspects of semantic interpretation are due to predicates" denotations and which are due to the denotations of their arguments?

CENTRAL QUESTION

Which aspects of semantic interpretation are due to predicates" denotations and which are due to the denotations of their arguments?

Focus: temporal interpretation in English nonfinite embedded clauses.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

I. Jo wanted to leave.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

I. Jo wanted to leave.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

I. Jo wanted to leave.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

I. Jo wanted to leave.
2. Jo regretted leaving.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

I. Jo wanted to leave.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

I. Jo wanted to leave.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

3. Jo remembered leaving.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

3. Jo remembered leaving.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

3. Jo remembered leaving.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

3. Jo remembered leaving.
 4. Jo remembered to leave.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

3. Jo remembered leaving.
 4. Jo remembered to leave.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

4. Jo remembered to leave.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

4. Jo remembered to leave.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

4. Jo remembered to leave.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

4. Jo remembered to leave. -

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

4. Jo remembered to leave.

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

CLAUSE EMBEDDING AND TEMPORAL ORIENTATION

QUESTION

What is the source of this temporal orientation?

CHALLENGE

Are predicates like remember and claim just idiosyncratic?

CHALLENGE

Are predicates like remember and claim just idiosyncratic?

Bird's-eye view of temporal orientation across the lexicon

APPROACH

- Collect a lexicon-scale dataset of clause-embedding verbs with different possible embedded structures

APPROACH

- Collect a lexicon-scale dataset of clause-embedding verbs with different possible embedded structures
- Formalize possible theoretical frameworks as parameters in a computational model and test on data

TALK OUTLINE

 - Introduction
TALK OUTLINE

- Introduction
- Three Hypotheses

TALK OUTLINE

- Introduction
- Three Hypotheses
- Data Collection

TALK OUTLINE

- Introduction
- Three Hypotheses
- Data Collection
- Model Design

TALK OUTLINE

- Introduction
- Three Hypotheses
- Data Collection
- Model Design
- Analysis and Results

HYPOTHESES

I. Lexicall: Temporal orientation is due to the predicate

HYPOTHESES

I. Lexical: Temporal orientation is due to the predicate

Jo regretted leaving \llbracket regret] $\rightarrow \mathrm{t}_{\text {(regrete }}<\mathrm{t}_{\text {(leave }}$

HYPOTHESES

2. Structurall: Temporal orientation is due to the structure of the argument selected by the predicate

HYPOTHESES

2. Structural: Temporal orientation is due to the structure of the argument selected by the predicate

Jo regretted leaving

HYPOTHESES

3. Mixed: temporal orientation depends on both the

 predicate and argument type.
HYPOTHESES

3. Mixed: temporal orientation depends on both the predicate and argument type.

Jo remembered leaving. \llbracket remember $\rrbracket \rrbracket \rightarrow t_{\text {(remember }}<\mathrm{t}_{\text {(leave }}$

TALK OUTLINE

- Introduction
- Three Hypotheses

TALK OUTLINE

- Introduction
- Three Hypotheses
- Data Collection

GOAL

A way to capture temporal orientation across different possible verb/structure pairings

GOAL

A way to capture temporal orientation across different possible verb/structure pairings

GOAL

A way to capture temporal orientation across different possible verb/structure pairings

A bleaching method for acceptability judgements, following White and Rawlins 2016

DATA COLLECTION

Jo wanted to leave in the future. *Jo will want to leave in the past.

DATA COLLECTION

temporal adverb phrase

Jo wanted to leave in the future. *Jo will want to leave in the past.

DATA COLLECTION

tense manipulation temporal adverb phrase
Jo wanted to leave in the future.
*Jo will want to leave in the past.

DATA COLLECTION

tense manipulation temporal adverb phrase

Jo wanted to leave in the future.
*Jo will want to leave in the past.
future-oriented
past-oriented

DATA COLLECTION

$$
N P^{\ldots} \text { __ doing something }
$$

Someone regretted doing something.

DATA COLLECTION

NP __ to do something

Someone wanted to do something.

DATA COLLECTION

NP __ to have something

Someone loved to have something.

DATA COLLECTION

NP was __ to do something

Someone was told to do something.

(Pesetsky I99I, Moulton 2009)

DATA COLLECTION

NP was __ to have something

Someone was believed to have something.

DATA COLLECTION

- 2208 verb/complement pairs in 2 orientations

DATA COLLECTION

- 2208 verb/complement pairs in 2 orientations
- Semantically bleached $3^{\text {rd }}$ person singular subject

DATA COLLECTION

- 2208 verb/complement pairs in 2 orientations
- Semantically bleached $3^{\text {rd }}$ person singular subject
- Lists of 48 sentences, with even distribution of orientations and randomized item order

DATA COLLECTION

- 2208 verb/complement pairs in 2 orientations
- Semantically bleached $3^{\text {rd }}$ person singular subject
- Lists of 48 sentences, with even distribution of orientations and randomized item order
- 10 acceptability judgements per sentence from 869 annotators on Mechanical Turk

DATA COLLECTION

Someone knew to do something in the future.

DATA COLLECTION

verb
 Someone knew to do something in the future.

DATA COLLECTION

verb complement

Someone knew to do something in the future.

DATA COLLECTION

verb complement

Someone knew to do something in the future.

How acceptable is this sentence?

DATA COLLECTION

verb complement

Someone knew to do something in the future.

future-oriented

How acceptable is this sentence?

DATA COLLECTION

verb complement

Someone knew to do something in the future.

future-oriented

How acceptable is this sentence?

DATA COLLECTION

Someone will wish to have something in the past.

DATA COLLECTION

verb

Someone will wish to have something in the past.

DATA COLLECTION

verb complement

Someone will wish to have something in the past.

DATA COLLECTION

verb complement

Someone will wish to have something in the past.

How acceptable is this sentence?

DATA COLLECTION

verb complement

Someone will wish to have something in the past.

past-oriented

How acceptable is this sentence?

DATA COLLECTION

verb complement

Someone will wish to have something in the past.

past-oriented

How acceptable is this sentence?

Past-oriented

Past-oriented

Past-oriented

Past-oriented

TALK OUTLINE

- Introduction
- Three Hypotheses
- Data Collection

TALK OUTLINE

- Introduction
- Three Hypotheses
- Data Collection
- Model Design

GOAL

\checkmark A way to capture temporal orientation across different possible verb/structure pairings

GOAL

\checkmark A way to capture temporal orientation across different possible verb/structure pairings

- A way to model our hypotheses relative to this data

(An \& White 2020)

(White \& Rawlins 2016)

(An \& White 2020)

(White \& Rawlins 2016)

Number of verb types

Number of verb types

Number of structure types

0	1	2	3	4

Number of verb types

Difference in log-likelihood
$2956500^{\circ}=10^{\circ}$

Difference in log-likelihood

Verb	Complement	Future Acc.	Past Acc.
abhor	NP Ved VPing	-0.503955	0.413169
abhor	NP was Ved to VP[+eventive]	0.134924	-1.559801
absolve	NP Ved to VP[+eventive]	0.948428	-2.079783
accept	NP Ved VPing	4.774069	1.883071
accept	NP Ved to VP[-eventive]	2.434219	-1.854628
accept	NP was Ved to VP[+eventive]	2.946932	-2.002958
acclaim	NP Ved VPing	-2.137957	0.221483
acclaim	NP Ved to VP[+eventive]	-2.549958	-0.554269
acclaim	NP was Ved to VP[-eventive]	1.382240	-0.742686
add	NP Ved VPing	3.664288	-3.777042
add	NP Ved to VP[+eventive]	0.503324	-0.172519
add	NP was Ved to VP[+eventive]	1.878762	-2.685818
address	NP Ved VPing	1.876711	3.596447
address	NP was Ved to VP[+eventive]	0.928784	-1.928204
admire	NP Ved VPing	-0.070897	-0.475992
admit	NP Ved VPing	-0.690028	4.566390
admit	NP Ved to VP[+eventive]	-3.257618	0.955866
admit	NP Ved to VP[-eventive]	0.373650	-2.930481
admit	NP was Ved to VP[+eventive]	-1.103509	1.371476
admit	NP was Ved to VP[-eventive]	0.318550	1.463886

Verb	Complement	Future Acc.	Past Acc.
abhor	NP Ved VPing	-0.503955	0.413169
abhor	NP was Ved to VP[+eventive]	0.134924	-1.559801
absolve	NP Ved to VP[+eventive]	0.948428	-2.079783
accept	NP Ved VPing	4.774069	1.883071
accept	NP Ved to VP[-eventive]	2.434219	-1.854628
accept	NP was Ved to VP[+eventive]	2.946932	-2.002958
acclaim	NP Ved VPing	-2.137957	0.221483
acclaim	NP Ved to VP[+eventive]	-2.549958	-0.554269
acclaim	NP was Ved to VP[-eventive]	1.382240	-0.742686
add	NP Ved VPing	3.664288	-3.777042
add	NP Ved to VP[+eventive]	0.503324	-0.172519
add	NP was Ved to VP[+eventive]	1.878762	-2.685818

Train model

Train model

Train model

Train model

Test on held-out data

Test on held-out data

Train model

Train model

Train model

Train model

Train model

Test on held-out data

Train model

Train model

Train model

Train model

Train model

Test on held-out data

Train model

Train model

Train model

Train model

Train model

Test on held-out data

Train model

TALK OUTLINE

- Introduction
- Three Hypotheses
- Data Collection
- Model Design

TALK OUTLINE

- Introduction
- Three Hypotheses
- Data Collection
- Model Design
- Analysis and Results

Number of verb types

Difference in held-out
log-likelihood (log-scale)
$50^{00} 55^{\circ}, 0^{\circ} \div 0^{\circ}$
0
$10.100^{\circ} 50^{\circ}$

Difference in held-out
log-likelihood (log-scale)

Difference in held-out
log-likelihood (log-scale)

Difference in held-out log-likelihood (log-scale)

0	1	2	3	4	5	6	7	8	9	10	11	12
	Number of verb types											

CONCLUSION

Both constructionall and lexical models do fit the data, but in different ways, mixed models less so.

CONCLUSION

> Both constructionall and lexical models do fit the data, but in different ways, mixed models less so.

These models capture fine-grained information about verbal semantics in areas related to temporality.

CONCLUSION

Both constructional and lexical models do fit the data, but in different ways, mixed models less so.
These models capture fine-grained information about verbal semantics in areas related to temporality.
Lexicon-scale datasets of verb features like this can enable us to empirically test theoretical possibilities.

Thank you!

REFERENCES

Abusch, Dorit. 1997. Sequence of Tense and Temporal De Re. Linguistics and Philosophy 20:I-50.

An, Hannah Youngeun, and Aaron Steven White. 2020.The lexical and grammatical sources of neg-raising inferences. In Proceedings of the Society for Computation in Linguistics, to appear. Grano, Thomas. 2012. Control and Restructuring at the Syntax-Semantics Interface. Doctoral Dissertation, University of Chicago. Grano,Thomas. 2017.The logic of intention reports. Journal of Semantics 34:587-632.

Kratzer,Angelika. I998. More structural analogies between pronouns and tenses. Proceedings from Semantics and Linguistic Theory, 8:92-I I0.
Moulton, Kier. 2009. Natural Selection and the Syntax of Clausal Complementation. Doctoral Dissertation, University of Massachusetts Amherst.
Landau, Idan. 2001. Elements of Control: Structure and meaning in infinitival constructions. Dordrecht: Springer Science \& Business Media.
Ogihara, Toshiyuki. 1995. The Semantics of Tense in Embedded Clauses. Linguistic Inquiry 26:663-679
Partee, Barbara H. 1973. Some structural analogies between tenses and pronouns in English. Journal of Philosophy 70:601-609.
Pearson, Hazel. 20I6. The semantics of partial control. Natural Language \& Linguistic Theory 34:69I-738.
Pesetsky, David. I991. Zero syntax: vol. 2: Infinitives.
Stowell, Tim. 1982. The tense of infinitives. Linguistic Inquiry 13:561-570
White, Aaron Steven, and Kyle Rawlins. 2016. A computational model of S-selection. Semantics and Linguistic Theory 26:64I-663.
White, Aaron Steven, and Kyle Rawlins. 2018. The role of veridicality and factivity in clause selection. In Proceedings of the 48th Annual Meeting of the North East Linguistic Society, to appear. Amherst, MA: GLSA Publications.

Wurmbrand, Susi. 200I. Infinitives: Restructuring and clause structure. Berlin: Mouton de Gruyter.
Wurmbrand, Susi. 20I4. Tense and aspect in English infinitives. Linguistic Inquiry 45:403-447.

APPENDICES

ANNOTATOR INSTRUCTIONS

In this experiment, we are interested in words that talk about things like memories, desires, and other mental states, such as remember or hope. Specifically, we're interested in what these words tell us about the time the memory or desire is about.

The way we are investigating this is by looking at the "acceptability" of sentences that are made up of words about memories, desires, etc. and times, such as the future or the past. An "acceptable" sentence is something a native speaker of English would say, even if the situation the sentence describes sounds vague or implausible.

Your task will be to respond about the acceptability of each sentence on a scale from 1 to 7 that will appear under each question, where 1 corresponds to terrible and 7 corresponds to perfect.

For instance, you might be presented with the sentence Someone wanted to do something in the future. In this case you would select a 6 or a 7 , since desires are usually about the future.

If the sentence were Someone will regret doing something in the past, then you might select 1 or 2 , since regrets are also about the future.

And if the sentence were Someone will imagine doing something in the past, you might select a number near the middle, since imagining is often about the future, but it's not impossible for it to be about the past.

Try to answer the questions as quickly and accurately as possible, considering whether they present an order of events that makes sense.

