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Abstract

In English, the distinction between belief verbs, such as think, and desire verbs, such as
want, is tracked by the tense of those verbs’ subordinate clauses. This has led some au-
thors within the syntactic bootstrapping literature to propose that subordinate clause tense
is an integral part of the acquisition of belief and desire predicates. This proposal is prob-
lematic since the correlation between tense and the belief v. desire distinction is not cross-
linguistically robust, yet the acquisition profile for these verbs appears to be identical cross-
linguistically. Thus, a story on which a particular syntactic feature—such as tense—cues the
learner to the appropriate label for a particular semantic distinction—belief v. desire—will
not work unmodified. Our proposal in this chapter is that, rather than being cued to a
semantic distinction, like belief v. desire, by a particular syntactic feature, like subordinate
clause tense, learners may utilize more abstract syntactic cues, whose instantiation is con-
strained to a small set of possible syntactic feature configurations, but must ultimately be
tuned to the syntactic distinctions present in a particular language.

1 Introduction

Syntactic bootstrapping encompasses a family of approaches to verb learning wherein learn-
ers use the syntactic contexts a verb is found in to infer its meaning (Landau and Gleitman,
1985; Gleitman, 1990). Any such approach must solve two problems. First, it must spec-
ify how learners cluster verbs—i.e., figure out that some set of verbs shares some meaning
component—according to their syntactic distributions. For instance, an English learner might
cluster verbs based on whether they embed tensed subordinate clauses (1) or whether they
take a noun phrase (2).

(1) a. John {thinks, believes, knows} that Mary is happy.
b. *John {wants, needs, orders} that Mary is happy.

(2) a. John {believes, knows, wants, needs}Mary.
b. *John {thinks, orders}Mary.

For different parts of the lexicon, different clusterings may be better or worse. Among propo-
sitional attitude verbs—like think, believe, know, want, need, and order—clustering based on
whether the verb takes a subordinate clause yields intuitively better clusters than clustering
based on whether it takes a noun phrase (at least when these structures are considered in iso-
lation). That is, CLUSTERs 1 and 2 are intuitively more coherent than CLUSTERs 3 and 4.

(3) a. CLUSTER 1: think, believe, know
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b. CLUSTER 2: want, need, order
c. CLUSTER 3: believe, know, want, need
d. CLUSTER 4: think, order

We refer to the problem of choosing how to cluster verbs based on syntactic context as the
clustering problem, and we call the learning mechanism that solves this problem—i.e., outputs
clusters like those in (3)—the clustering mechanism.

The second problem a syntactic bootstrapping approach must solve regards how learners
label the clusters output by a clustering mechanism—i.e., figure out what meaning component
a particular cluster of verbs corresponds to. For instance, a common way of labeling CLUSTERs
1 and 2 is to say that all verbs in CLUSTER 1 have a BELIEF component and all verbs in CLUSTER

2 have a DESIRE component.

(4) a. CLUSTER 1←→ BELIEF

b. CLUSTER 2←→ DESIRE

We refer to this second problem, which is in many ways more difficult than the clustering
problem, as the labeling problem, and we call the learning mechanism that solves this problem—
i.e., labels the clusters output by the clustering mechanism—the labeling mechanism.

In this paper, we present evidence from the domain of propositional attitude verbs that
previous labeling mechanisms are unsatisfactory both empirically and explanatorily, and we
propose a novel labeling mechanism. We focus in particular on the distinction among propo-
sitional attitude verbs between belief verbs, like think, and desire verbs, like want.

In the next section, we discuss the two main approaches to solving the labeling prob-
lem that have been instantiated in the literature and show that both of these approaches are
inadequate—either because they make incorrect predictions or because they make essentially
no predictions at all. Throughout this section, we make reference to the belief-desire distinc-
tion as an exemplar, though we defer a detailed discussion of its distributional properties until
Section 3. In Section 4, we present our proposal, which is a hybrid to the two previous ap-
proaches, at a conceptual level, then we present a computational level (Marr, 1982) description
of the representations we employ in implementing the proposal. In Section 5, we implement
this computational level description as a learning algorithm. In Section 6, we present a brief
proof-of-concept experiment, which shows that our model finds a correct labeling when run
on syntactic distributions found in child-direct speech (CDS). In Section 7, we conclude with
some remarks on what our proposal entails for the theory of verb learning.

2 Approaches to the labeling problem

Current approaches to the labeling problem fall into two broad categories: the top-down ap-
proach and the bottom-up approach. In the top-down approach—the traditional one laid out in
Landau and Gleitman 1985; Gleitman 1990—labeling is part-and-parcel with clustering. The
learner has some innate mappings from semantic features to syntactic features (projection rules;
Gruber 1965; Carter 1976; Chomsky 1981; Pinker 1984, 1989; Grimshaw 1990; Levin 1993; Hale
and Keyser 2002), and upon noticing that a particular verb occurs with a particular syntactic
feature, the learner reverses those projection rules to get from that syntactic context to that
word’s corresponding semantic components (Kako, 1997; Lidz et al., 2004; White, 2015).

Continuing the examples above, a verb’s taking a tensed subordinate clause correlates (in
English) with that verb being a belief verb (5a), like think, believe, or know (Bolinger, 1968;
Stalnaker, 1984; Farkas, 1985; Heim, 1992; Villalta, 2000, 2008; Anand and Hacquard, 2013,
among others). This is corroborated by the fact that desire verbs, like want, prefer, and order,
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which arguably do not have a belief component, do not take tensed subordinate clauses (5b).1

(5) a. John {thinks, believes, knows} that Mary is happy.
b. *John {wants, needs, orders} that Mary is happy.

Assuming this correlation to be cross-linguistically robust, a syntactic bootstrapping account
might then posit that learners have some innate projection rule (6a) that they can reverse to
get from the fact that think, believe, and know occur with finite complements (6b) to the fact that
think, believe, and know have a BELIEF meaning (6c) (De Villiers and De Villiers, 2000; De Villiers
and Pyers, 2002; de Villiers, 2005).

(6) Top-down approach
a. Knowledge: BELIEF −→ S[+TENSE]
b. Data: {think, believe, know} S[+TENSE]
c. Inference: BELIEF←− {think, believe, know}

The top-down approach makes strong predictions about learners’ inferences: labeling is an
automatic consequence of noticing a distributional fact—in this case, that a verb takes a tensed
subordinate clause.

One difficulty that arises with the top-down approach is that it is not robust to cross-
linguistic variation. For instance, suppose that the projection rule in (6a) were innate. One
would expect either (i) that all languages show a correlation between a verb’s having a BE-
LIEF component and its taking tensed clauses; or (ii) that, if a language does allow non-belief
verbs—e.g., desire verbs like want—to take tensed clauses, learners might go through a stage
where they incorrectly believe that those verbs actually have a BELIEF component. Neither of
these possibilities are realized: (i) there are languages, such as German, where both belief and
desire verbs take tensed subordinate clauses (7); and (ii) in these languages, children do not
mistake one type of verb for the other (Perner et al., 2003). (We discuss both of these points
further in Section 3.)

(7) a. Ich
I

glaube,
think

dass
that

Peter
Peter

nach
to

Hause
home

geht.
goes.

b. Ich
I

will,
want

dass
that

Peter
Peter

nach
to

Hause
home

geht.
goes.

The bottom-up approach remedies this issue at the cost of making weaker distributional and
developmental predictions. In the bottom-up approach (Alishahi and Stevenson, 2008), learn-
ers cluster verbs (8c-i) based on syntactic context (8b), but the clustering mechanism itself does
not provide the labels for these clusters. Rather, the learner must notice some correlation be-
tween the unlabeled clusters and the sorts of conceptualizations they have when that cluster
is instantiated (8c-ii).2 Then, given the cluster each verb falls into (8c-i) and the labeling of that
cluster (8c-ii), the learner can make the inference that those verbs have that label (8c-iv).

(8) Bottom-up approach
a. Knowledge: ∅3

1But see Heim (1992) for a proposal on which want does have a belief component.
2The bottom-up approach is similar in form to semantic bootstrapping, in which learners are presumed to have

access to the semantics relevant to a particular learning instance (Grimshaw, 1981, 1994; Pinker, 1984, 1989, 1994):
in this case, the fact that the conceptual content BELIEF “cooccurs” with the linguistic content {think, believe,
know} S[+TENSE]. It differs, however, in the sense that semantic bootstrapping is a theory of how children come to
learn the syntax of their language, whereas the bottom-up approach assumes access to the syntax as a prerequisite.
Further, the traditional version of the semantic bootstrapping is more like the top-down approach in assuming
learners have innate projection rules (though see Connor et al. 2013).

3There is of course knowledge that learners are required to have for either approach to work that we are not
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b. Data: (BELIEF, {think, believe, know} S[+TENSE])
c. Inferences

(i) CLUSTER 1←− {think, believe, know}
(ii) CLUSTER 1←→ BELIEF

(iii) CLUSTER 1←→ S[+TENSE]
(iv) BELIEF←− {think, believe, know}
(v) BELIEF −→ S[+TENSE]

Importantly, the bottom-up approach can also learn the projection rule from BELIEF to tense
(8c-v) by noticing a correlation between the cluster and the syntax (8c-iii)—similar to the ex-
planation for how the label itself is associated with the cluster. Indeed, some bottom-up mod-
els, such as Alishahi and Stevenson’s (2008), explicitly treat the association between the cluster
and the concept as of the same type as the association between the cluster and the syntactic
feature—i.e., the projection rule. This is because they treat both the concept and the syntax as
observed features of the verb, which can both be used in forming the cluster in the first place.

The bottom-up approach has two major problems. First, it makes weak predictions about
learners’ inferences. Since the labeling mechanism is a separate component of the overall
word-learning mechanism, learners could in principle learn any relationship between un-
labeled cluster, conceptual label, and syntactic feature—not just cross-linguistically attested
ones. Relatedly, it makes no predictions about what should be cross-linguistically attested.
Since the bottom-up approach has no way of encoding biases for particular concept-to-syntax
mappings, it has no way of explaining correlations between the syntax and the semantics, even
if it has a way of learning them.

Second, the bottom-up approach requires the rejection of one of the main arguments for
syntactic bootstrapping in the first place: the fact that some semantic components seem to
be “closed to observation”—the parade case being components associated with abstract con-
ceptual content like BELIEF and DESIRE (Gleitman, 1990; Gillette et al., 1999; Snedeker and
Gleitman, 2004; Gleitman et al., 2005; Papafragou et al., 2007). One cannot observe believing
or wanting.

Both of these weaknesses remain unremedied in recent instantiations of the bottom-up
approach that focus explicitly on propositional attitude verbs (Barak et al., 2012, 2013, 2014a,b).
In fact, for the purposes of learning a word’s meaning, the syntactic features are to some extent
superfluous for models like Alishahi and Stevenson’s and Barak et al.’s, since the semantics
themselves are observed and can thus contribute to forming a cluster with a particular label.
In this sense, the bottom-up approach is essentially a cross-situational word learning model
(Yu and Smith, 2007; Smith and Yu, 2008; Yu and Smith, 2012; Medina et al., 2011; Trueswell
et al., 2013) with additional features (cf. Frank et al., 2009). But for the same reason that the
bottom-up approach is explanatorily weak, it is robust to cross-linguistic variability. As long
as some syntactic feature correlates with a particular semantic distinction, the relationship
between that feature and that distinction should be learnable.

This robustness to cross-linguistic variability comes with a prediction: any correlation be-
tween a syntactic feature and a semantic distinction is purely a coincidence of a particular lan-
guage’s lexicon, at least from the learner’s point-of-view. Thus, evidence for an interpretable
set of constraints on how a semantic feature relates to a syntactic feature is evidence against
a bottom-up approach. Such evidence does not obviate the fact that the top-down approach
cannot work unmodified, but as we show below, it can usefully guide us toward an approach
with similar explanatory power.

listing here. For example, both the top-down and bottom-up approaches require (i) that the relevant syntactic
structures can be parsed by learners at the relevant developmental stage, and (ii) that the relevant conceptual
material is accessible to them at that stage. This second requirement may or may not be met at certain points in
development. See Onishi and Baillargeon 2005; Baillargeon et al. 2010 for evidence that this conceptual material is
accessible from a very young age.
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In the next section, we delve into the cross-linguistic distributional facts pertaining to the
belief-desire distinction. We give evidence (i) that the belief-desire distinction is not tracked
by a stable set of syntactic features across languages but (ii) that this instability is highly con-
strained. In particular, we suggest that the syntactic features that correlate with the distinction
in a particular language are exactly those features found in that language’s main clauses. We
argue that, stated in this way, the correlation between the belief-desire distinction and the syn-
tax of a particular language is interpretable as a consequence of a semanticopragmatic property
of particular belief predicates known as assertivity (Hooper, 1975).

3 The belief-desire distinction across languages

In this section, we briefly discuss attitude verb classifications relevant to the belief-desire dis-
tinction along with the cross-linguistic syntactic correlates of that distinction. As noted above,
the belief-desire distinction—or rather, a related, but more general, distinction between rep-
resentational verbs and preferential verbs—is cross-linguistically attested, but the syntactic
correlates of this distinction are unstable. In spite of this instability, we see that these syntac-
tic correlates all have a family resemblance: these syntactic correlates are just the ones that
distinguish declarative matrix clauses from other clause types. We then discuss the semanti-
copragmatic reasons why such a correlation should exist. We begin by reviewing the known
syntactic correlates of the belief-desire distinction and then discuss the semanticopragmatic
property—assertivity—that likely drives this correlation.

3.1 Representationals and preferentials in English

Propositional attitude verbs have highly multifaceted semantic representations—i.e., these
verbs can be clustered into many cross-cutting groups (see White 2015 for a review). One of the
most well-studied facets of attitude verb meaning is the distinction between verbs that express
beliefs—or more generally, represent “mental pictures” or “judgments of truth” (Bolinger,
1968)—and those that express desires—or more generally, preferences for particular states of
affairs associated with, e.g. commands, laws, preferences, etc. (Bolinger, 1968; Stalnaker, 1984;
Farkas, 1985; Heim, 1992; Villalta, 2000, 2008; Anand and Hacquard, 2013, a.o.). Within the first
class, which Bolinger (1968) calls the representationals, fall belief verbs like think, as well as com-
munication verbs, like say; and within the second class, which we refer to as the preferentials,
fall verbs like want and order.

In English, the distinction between representationals and preferentials is correlated strongly
with subordinate clause tense. Representationals tend to allow tensed subordinate clauses (9a)
while preferentials tend not to (9b).

(9) a. John thinks that Mary went to the store.
b. *John wants that Mary went to the store.

This generalization is often strengthened to incorporate the converse: representationals tend
not to allow untensed subordinate clauses (10a) while preferentials tend to (10b).

(10) a. *John thinks Mary to go to the store.
b. John wants Mary to go to the store.

The stronger version of this statement is supported by the existence of verbs that appear to
have both representational and preferential semantic components and can take both tensed
and untensed complements. For instance, hope p involves both a desire that p come about
and the belief that p is possible (Portner, 1992; Scheffler, 2009; Anand and Hacquard, 2013;
Hacquard, 2014; Harrigan, 2015, but see also Portner and Rubinstein 2013), and it occurs in
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both finite (11a) and nonfinite (11b) syntactic contexts. (This is true more generally for emotive
verbs like wish, fear, etc., though the exact form of the untensed complement may differ.)

(11) a. John hopes that Mary went to the store.
b. John hopes to go to the store.

The correlation between subordinate clause tense and the distinction between representation-
als and preferentials is imperfect (even in English). For example, both believe and remember
can take untensed subordinate clauses. This suggests that the stronger version of the tense
generalization—that representationals do not take untensed subordinate clauses—is imper-
fect.

(12) a. John believes Mary to be intelligent.
b. John remembered to take out the trash.

Further, some preferential verbs appear to allow subordinate clauses that look similar to the
tensed subordinate clauses that representationals take. For instance, demand can take clausal
complements headed by that, suggesting that even the weaker form of the generalization is
imperfect.

(13) John demanded that Mary go to the store.

This datum is perhaps less damaging to the weaker form of the generalization, since the kind
of that clauses that demand and other preferentials take generally require the verb to be in
the bare form. This could mean that these clauses are in fact untensed or that they involve a
distinct mood (for speakers of a dialect with the English subjunctive). In any case, these sorts of
subordinate clauses are extremely rare in child-directed speech—perhaps even nonexistent for
many learners—so at least the weaker form of the generalization seems safe for the purposes
of learning.

Beyond subordinate clause tense, the distinction between representationals and preferen-
tials appears to correlate with whether the verb’s subordinate clause can be fronted—or in
Ross’s (1973) terms, S-lifted. At least some representationals’ subordinate clauses (14) ap-
pear to be able to undergo S-lifting, but many preferentials’ subordinate clauses (15) cannot
(Bolinger, 1968). (Not all representationals allow S-lifting—likely because the availability of S-
lifting for a particular verb is conditioned by other semantic and pragmatic properties it has.)

(14) Mary already went to the store, I {think, believe, suppose, hear, see}
(15) a. *John already went to the store, I {want, need, demand}.

b. *John to go to the store, I {want, need, order}.

The ability to occur in S-lifting constructions appears to be related to the ability to allow com-
plementizer drop and the propositional anaphor so: many verbs that allow S-lifting also allow
complementizer drop and anaphoric so (Hooper, 1975; Grimshaw, 2009).

(16) a. I {think, know} (that) Jo already went to the store.
b. I {hate, love} *(that) Jo already went to the store.

The availability of these structures is related to a semanticopragmatic verb class Hooper (1975)
calls the assertives. A verb is assertive if it can be used by speakers to make indirect assertions,
as can be seen in (17a) (see Urmson 1952; Simons 2007; Lewis 2013; Anand and Hacquard 2014
for discussion). For instance, think and say seem to allow this (17a), but hate does not (17b).

(17) a. A: Where is Mary?
B: John {thinks, said} that she’s in Florida.
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b. A: Where is Mary?
B: # John hates that she’s in Florida.

Assertivity is intimately tied with representationality in that the verbs that can show up in
contexts like (17a) are always representational.4 The availability of this use is likely due to the
fact that these verbs express judgments of truth. This can be seen in the contrast between (18a)
and (18b) (Stalnaker, 1984).

(18) a. John thinks it’s raining, which is true.
b. John wants it to rain, #which is true.

We see in (18a) that the speaker can indirectly assert the content of the complement clause, by
endorsing the reported judgment of truth. In contrast, desire verbs express preferences, and
they are not routinely used to make indirect assertions. Instead, they are often used to make
indirect requests. For instance, sentences like (19) can be used to express more than a mere
desire, but to make a request.

(19) I want you to go to your room!

Thus, we see that the assertive verbs, which are a subset of the representational verbs are also
verbs that take tensed subordinate clauses whose complementizer can be dropped. This means
that representationals’ embedded clauses can match the syntactic features of a corresponding
declarative main clause in English.

(20) It’s raining.

We show in the next section that, even in the face of cross-linguistic variation in which syntactic
features correlate with the distinction between representationals and preferentials, this match
between representational subordinate clauses and declarative main clauses remains constant.

3.2 Representationals and preferentials in other languages

The syntax-semantics correlations discussed above do not necessarily hold cross-linguistically.
In some languages, the distinction is roughly tracked by mood. In the Romance languages, rep-
resentationals tend to take indicative mood and preferentials tend to take subjunctive mood
(Bolinger, 1968; Hooper, 1975; Farkas, 1985; Portner, 1992; Giorgi and Pianesi, 1997; Giannaki-
dou, 1997; Quer, 1998; Villalta, 2000, 2008; Anand and Hacquard, 2013, a.o.). For instance, in
Spanish both the representational (belief) verb creer (think/believe) and the preferential (desire)
verb querer (want) take finite subordinate clauses.

(21) a. Creo
think.1S.PRES

que
that

Peter
Peter

va
go.PRES.IND

a
to

la
the

casa.
house.

b. Quiero
want.1S.PRES

que
that

Peter
Peter

vaya
go.PRES.SBJ

a
to

la
the

casa.
house.

The difference between these subordinate clauses is that, whereas verbs like creer (think) take
subordinate clauses with verbs inflected for indicative mood (21a), verbs like querer (want) take
subordinate clauses with verbs inflected for subjunctive mood (21b). And as in English, the
subordinate clause under the representational verb creer is featurally similar to the declarative
main clause in Spanish, whose tensed verb is inflected for indicative mood.

(22) Peter
Peter

va
go.PRES.IND

a
to

la
the

casa.
house.

4Simons (2007) notes some potential counterexamples, but the contexts that these counterexamples can occur in
are extremely circumscribed, suggesting they may not involve true indirect assertions.
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Another example comes from some Germanic languages. As in Spanish, both representation-
als and preferentials in German allow tensed subordinate clauses.

(23) a. Ich
I

glaube,
think

dass
that

Peter
Peter

nach
to

Hause
home

geht.
goes.

b. Ich
I

will,
want

dass
that

Peter
Peter

nach
to

Hause
home

geht.
goes.

In subordinate clauses headed by the complementizer dass (that), the embedded verb occurs
clause-finally, which evidences the fact that German is underlyingly a subject-object-verb (SOV)
language. Both the verb glauben (think) and the verb wollen (want) can take such clauses, in
which the main verb is tensed.

Only representationals like glauben (think), however, allow a second sort of structure known
as verb second (V2) (Scheffler, 2009). If the complementizer dass (that) is not present, glauben
(think) can take a subordinate clause with V2 syntax (24a). Wollen does not allow this (24b).

(24) a. Ich
I

glaube,
think

Peter
Peter

geht
goes

nach
to

Hause.
home.

b. *Ich
I

will,
want

Peter
Peter

geht
goes

nach
to

Hause.
home.

Thus, the distinction between representationals and preferentials is tracked by the availability
of verb second (V2) syntax in their subordinate clauses (Truckenbrodt, 2006; Scheffler, 2009).
V2 is furthermore found in German declarative main clauses. For instance, (25) shows a Ger-
man main clause with the tensed form of the auxiliary verb sein (be) occurring as the second
word of the sentence (in second position). Compare this to the subordinate clause in (24a).

(25) Peter
Peter

geht
goes

nach
to

Hause.
home

Thus, preferentials in both Spanish and German take tensed complements, militating against a
hard-coded link between tense and representationality. But as we have been suggesting, they
still show language-internal correlations between representationality and some more abstract
aspect of the clausal syntax. The aspect of the clausal syntax that occurs with only the repre-
sentational verbs—indicative mood in Spanish and V2 in German—also tends to show up in
declarative main clauses (Dayal and Grimshaw, 2009; Hacquard, 2014).

3.3 Discussion

In this section, we noted a problem for the more explanatory top-down approach to syntactic
bootstrapping: not all languages make use of subordinate clause tense to distinguish belief
and desire verbs. However, they do seem to make the same broad distinctions (clusters), albeit
via different syntactic features—Romance uses mood and German uses word order. We then
suggested that, while the language specific syntactic features are different cross-linguistically,
they all converge at a more abstract level: belief verbs take complements that have syntactic
hallmarks of declarative main clauses—finite clauses in English, indicative mood in Romance,
verb second in German.

We hypothesize that children can exploit the syntactic parallels between direct and indirect
speech acts to reconstruct the underlying semantics. A verb like think takes complements with
syntactic hallmarks of declarative main clauses, and is used to make indirect assertions. Thus,
its meaning must be one that easily lends itself to indirect assertions: it must express a judg-
ment of truth, which the speaker can endorse—i.e., it must have a representational semantics.
We test the viability of such a proposal by asking whether a learner can discover the represen-
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tational class by tracking whether the syntactic features of a verb’s complements match those
of the declarative main clause in their language.

4 Our proposal

In this section, we propose a model that exploits the fact that languages show a correlation
between BELIEF semantic components and declarative main clause syntax. The two main con-
tributions that we make over and above previous accounts are the concept of an abstract projec-
tion rule and the concept of a featural anchor for that projection rule. An abstract projection rule
is a generalization of the traditional notion of a projection rule discussed in Section 2, wherein
particular semantic components map onto unvalued syntactic features that must become val-
ued over the course of learning. The featural anchor for that abstract projection rule is a class
of syntactic structures that (i) determine how the syntactic features in the abstract projection
rule are valued and (ii) are identifiable prior to verb learning. We suggest that the abstract
projection rule for BELIEF has the class of declarative main clauses as its featural anchor.

4.1 The main conceptual components

In Section 2, we argued that the top-down (traditional) approach to syntactic bootstrapping is
highly explanatory but brittle to cross-linguistic variability while the bottom-up approach is
robust to cross-linguistic variability but has essentially no explanatory power. Ideally, there
would be some way of combining the explanatory strengths of the top-down approach with
the cross-linguistic robustness of the bottom-up approach. This is what our proposal aims to
do. To carry this out, we propose to retain the notion of innate projection rules but incorporate
a notion of abstract syntactic feature. So where the top-down approach has projection rules
like (26a)—which we refer to as concrete projection rules—our model has projection rules like
that (26b)—which we refer to as abstract projection rules.

(26) a. BELIEF −→ S[+TENSE]
b. BELIEF −→ MAIN CLAUSE

MAIN CLAUSE ∈ S[+/-V2, +/-COMPLEMENTIZER, +/-MOOD, +/-TENSE]

This model lies mid-way between the top-down and bottom-up approaches in the following
sense: like the top-down approach, it retains projection rules and thus the basis for a built-in
labeling component, but like the bottom-up approach, it provides the flexibility to fit different
languages, since different languages value the syntactic features in (26b) differently.

Indeed, our model can mimic the behavior of both approaches depending on how abstract
the projection rules are. The projection rule (26a) can be thought of as a special case of an ab-
stract projection rule in that concrete projection rules are just the limiting case of an abstract
projection rule. In contrast, as the projection rules becomes more and more abstract—i.e., incor-
porate more and more features—they becomes essentially useless for labeling, thus requiring
an alternative like the cross-situational learning found in the bottom-up approach.

Because our proposal can mimic the behavior of models that take either the top-down or
bottom-up approach, there are two major hurdles our model faces. First, it must specify a set
of syntactic features for each projection rule that is suitably broad to capture cross-linguistic
facts but which is not so broad as to make the projection rule useless. Second, it must explain
how the mechanism sets those features—i.e., turns the +/-s in (26b) into +s and −s.

We propose that the solution to these two problems is always based on the following prin-
ciple: for every abstract projection rule, there corresponds a featural anchor. A featural anchor
for a projection rule is some privileged class of linguistic structures that (i) instantiates all of
the features in that rule and (ii) is identifiable without reference to those features.
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4.2 A computational level description

What are the formal commitments of our proposal? We require at least five types of cognitive
objects: (i) a set of verbs—e.g., {think, want, . . .}; (ii) a set of syntactic features—e.g., {TENSE,
MOOD, . . .}; (iii) a set of semantic components—e.g., {BELIEF, DESIRE, . . .}; (iv) a set of pro-
jection rules (either abstract or concrete); and (v) a featural anchor (a set of valued syntactic
features) for each abstract projection rule.5 Using these objects, the learner’s job is then to link
each verb with a conceptual/semantic representation or some set thereof.

For the sake of exposition, we will also consider a sixth sort of object: an indexed set of
variables over semantic components. This set models the unlabeled clusters one sees in the
bottom-up approach, wherein the cluster index stands as a placeholder for a semantic compo-
nent to be provided by the labeling mechanism. We incorporate it here since it allows us to
show how our hybrid model differs from a bottom-up approach mathematically, though it is
not a necessary component of our proposal. Indeed, we believe that minimizing or jettisoning
the use of such variables is a criterion for explanatory adequacy—since ideally, one can retain
the very strong hypothesis present in the top-down approach that the clustering and labeling
components are one and the same thing (at least insofar as the use of syntax as a word-learning
cue is concerned).

Let’s begin by first setting up how we represent the relationship between verbs and se-
mantic components. To a large extent, these representations are those proposed by White et al.
(under reviewa) in his computational model of syntactic bootstrapping; however, our proposal
can be implemented in, e.g., Alishahi and Stevenson’s (2008) with few changes. We prefer to
work with White et al.’s representations since they more transparently map to traditional no-
tions in syntactic and semantic theory.

Given the existence of verbs like hope, which have both BELIEF and DESIRE components, we
assume that each verb is linked with a (possibly singleton) set of semantic representations. For
instance, if BELIEF and DESIRE were the only semantic representations, the English adult state
would look like (27).

(27) a. think→ {BELIEF}
b. hope→ {BELIEF, DESIRE}
c. want→ {DESIRE}

Note that for any fixed set of semantic components, the mappings in (27) can be represented
as vectors of ones and zeros (Stone, 1936). So for instance, if BELIEF and DESIRE were again the
only semantic representations, we could equivalently represent (27) as in (28), where the first
coordinate corresponds to BELIEF and the second coordinate corresponds to DESIRE.

(28) a. think→
( BELIEF DESIRE

1 0
)

b. hope→
( BELIEF DESIRE

1 1
)

c. want→
( BELIEF DESIRE

0 1
)

This suggests a compact way of representing semantic components in the lexicon; we bundle
each vector in (28) into a matrix, where rows of the matrix correspond to verbs and columns
correspond to semantic components. We’ll call this matrix S for semantic components.

5There is an important distinction between conceptual representations and semantic representations, but this
distinction is immaterial here.
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(29) S =


BELIEF DESIRE

think 1 0
hope 1 1
want 0 1


This in turn provides a natural way to state the labeling problem. First, note that the setup
so far just concerns the representation of which verbs have which semantic components. Ev-
ery theory of syntactic bootstrapping, regardless of approach, needs some way of doing this.
To state the labeling problem, simply replace BELIEF and DESIRE in (29) with CLUSTER 1 and
CLUSTER 2. Let’s call the resulting matrix S′.

(30) S′ =


CLUSTER 1 CLUSTER 2

think 1 0
hope 1 1
want 0 1


The labeling problem is then stated as: how do learners map from S′ to S? Or focusing on
just the column labels, how do they map from the labels on the columns of S′, label(S′) =
(CLUSTER 1, CLUSTER 2) to the labels on the columns of S, label(S) = (BELIEF, DESIRE), possi-
bly with the help of the ones and zeros in the matrix itself?

Let’s call this mapping L (for labeling mechanism), where the domain and codomain have
the same cardinality. (We’ll also assume that this mapping is a function—i.e., maps each unla-
beled cluster onto only a single semantic component—though nothing hinges on this.)

(31) L : {CLUSTER 1, CLUSTER 2, . . .} → {BELIEF, DESIRE, . . .}

So how do the two approaches discussed above solve the labeling problem stated as such? That
is, how do they select a mapping L? In the bottom-up approach, this is done using a separate
source of data: pairings of unlabeled clusters with semantic components. Within the current
setup, bottom-up approaches consider all possible functions from {CLUSTER 1, CLUSTER 2, . . .}
to {BELIEF, DESIRE, . . .}, since they have no idea a priori what the data will look like. This con-
sideration of all possible functions is what gives rise to the dissatisfying aspect of this approach
that no particular mapping is singled out.

In contrast, the top-down approach considers only one mapping L. Or perhaps, more
parsimoniously, it has no notion of L, since it needs no notion of unlabeled cluster in the first
place. To see this, it is useful to introduce a formalization of the projection rules. And to do
this, it’s useful to return to our concrete rule for BELIEF, repeated in (32a). This rule—and by
definition, all projection rules—has the general form found in (32b).

(32) a. BELIEF −→ S[+TENSE]
b. SEMANTIC COMPONENT −→ SYNTACTIC CONFIGURATION

SYNTACTIC CONFIGURATION ∈ [+/-SYNTACTIC FEATURE 1, . . .]

We can then play (almost) the same encoding game we did for the semantic components. Each
valued syntactic feature on the right side of a particular projection rule goes in a set corre-
sponding to the semantic component.6

6One consequence of this encoding is that projection rules only select features they like; they never specify
which features that dislike by, e.g., encoding those features by having a negative value. So, if DESIRE projected onto
[-TENSE], the representation of the rule would be as in (ia)—not as in (ib) or (ic).

(i) a. DESIRE→
(+TENSE -TENSE · · ·

0 1 · · ·
)

b. DESIRE→
(+TENSE -TENSE · · ·
−1 1 · · ·

)

11



(33) BELIEF→
(+TENSE -TENSE · · ·

1 0 · · ·
)

And just as before, we can associate each valued feature with a position in a vector of zeros
and ones, then concatenate those rules into a matrix P (for projection).

(34) P =

(+TENSE -TENSE · · ·
BELIEF 1 0 · · ·
· · ·

...
...

. . .

)
What does this buy us? It buys us labeling. To see this, we need to define how to get from a
word’s semantic components S to its syntactic distribution using the projection rules, encoded
in P. We’ll state this directly and then walk through why this statement is reasonable. A
word’s distribution is given as a row in the matrix D, which we define as the product of the
semantic component matrix S and the projection matrix P, given in (35a). If we view products
as boolean ∧ and sums as boolean ∨, this yields an expression in disjunctive normal form, as
in (35b).

(35) a. D ≡ SP
b. dvf =

∑
k svkpkf =

∨
k svk ∧ pkf , ∀v ∈ VERB, ∀f ∈ SYNTACTIC FEATURE

where k ∈ SEMANTIC COMPONENTS

So for instance, if v is think and f is [+TENSE], we know that dvf will be (at least) one, since
when k is BELIEF, both svk and pkf are 1. We then say that, if dvf is one, then verb i can take
feature j. (One may wish to specify projection rules and syntactic distributions in terms of
combinations of features, which in the limit yields subcategorization frames. This is easily
done in the current setup by assuming that the columns of P and D are sets of valued features
instead of single features.)

We submit that this setup gives us labeling for free. Since the rows of P are labeled and
since the same row k of P is always multiplied with the same column k of S. Thus, each
column of S corresponds to a particular projection rule and, as a consequence, to the particular
semantic component to which that projection rule corresponds. This is why we say that a
top-down approach only considers a single L (or perhaps, has no notion of L at all).

But for the same reason that the top-down approach has no notion of L it also has no way
of loosening the projection rules. As we discussed, this is problematic, since we need some
way of capturing cross-linguistic differences in the way that semantic components like BELIEF

are mapped onto the syntax. To see how this problem arises in the current setup, consider a
very simple algorithm for reversing the projection rules: for each pairing of a verb v and a set
of valued syntactic features—e.g., think S[+TENSE]—find a projection rule pk that values those
features the same way and flip the semantic component k on for verb v—i.e., set svk to one.
But suppose that the projection matrix is the one given in (34). This is problematic for, e.g.,
Spanish learners, since they will receive examples like want S[+TENSE] and thus infer that want
has a BELIEF component.

We are now in a position to state our proposal. Rather than encode P as in (34), we initialize
it to one for every valuation of a feature that varies cross-linguistically. This yields a projec-
tion rule that can never match a particular structure, since by definition it contains conflicting

c. DESIRE→
( TENSE · · · · · ·
−1 0 · · ·

)
Why one would want this is unimportant for current purposes, but the intuition is roughly that projection rules
do not appear to interact to cancel each other out. That is, having a particular semantic component only makes
more structures possible—cf. hope, which has both BELIEF and DESIRE. Thus, under the current model, projection
is monotone nondecreasing.
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valuations of particular features. For instance, we posit the initial projection matrix in (36).

(36) P =

(+TENSE -TENSE +COMP -COMP +IND -IND · · ·
BELIEF 1 1 1 1 1 1 · · ·
· · ·

...
...

...
...

...
...

. . .

)
Part of the job of syntactic bootstrapping is then to filter out conflicting valuations until a
concrete projection rule emerges, at which point the rule can in principle match actual feature
valuations observed with a verb. The English learner must then perform the conversion in (37)
and the Spanish learner must perform the conversion in (38).

(37)

(+TENSE -TENSE +COMP -COMP +IND -IND · · ·
BELIEF 1 1 1 1 1 1 · · ·
· · ·

...
...

...
...

...
...

. . .

)
⇓ ⇓ ⇓ ⇓ ⇓ ⇓(+TENSE -TENSE +COMP -COMP +IND -IND · · ·
BELIEF 1 0 0 1 0 0 · · ·
· · ·

...
...

...
...

...
...

. . .

)

(38)

(+TENSE -TENSE +COMP -COMP +IND -IND · · ·
BELIEF 1 1 1 1 1 1 · · ·
· · ·

...
...

...
...

...
...

. . .

)
⇓ ⇓ ⇓ ⇓ ⇓ ⇓(+TENSE -TENSE +COMP -COMP +IND -IND · · ·
BELIEF 1 0 1 0 1 0 · · ·
· · ·

...
...

...
...

...
...

. . .

)
How do learners go about doing this conversion? This is where the notion of a featural anchor
becomes important. We propose that the way learners perform the conversion in (37) and (38)
is by setting the projection rule for BELIEF pBELIEF to the valuation they observed for the featural
anchor corresponding to BELIEF—i.e., the valuation of their language’s main clause.

We show how to implement this proposal algorithmically in the next section, but before
moving on it is useful to see why going beyond the above formalization is necessary in the
first place. One thing this formalization leaves open is how one should handle language in-
ternal irregularities in the projection rules. For instance, we noted in Section 3 that it is only
a tendency for representationals to allow complementizer drop. But if our model values the
projection rule for BELIEF based on a language’s main clause, as in (39) for English, and if we
require a perfect match with the projection rule, then the representationals that do not allow
complementizer drop will not be labeled with the BELIEF component. This is even worse in a
language like Spanish, where complementizer drop is not possible at all but where the declar-
ative main clauses do not require complementizers.

(39)

(+TENSE -TENSE +COMP -COMP +IND -IND · · ·
BELIEF 1 1 1 1 1 1 · · ·
· · ·

...
...

...
...

...
...

. . .

)
⇓ ⇓ ⇓ ⇓ ⇓ ⇓(+TENSE -TENSE +COMP -COMP +IND -IND · · ·
BELIEF 1 0 0 1 0 0 · · ·
· · ·

...
...

...
...

...
...

. . .

)
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This suggests that we need some way of allowing partial matches to the projection rules. In
the next section, we implement this idea using a probabilistic model.

5 Implementing our proposal

In this section, we define a probabilistic model that implements the computational level de-
scription from the last section. We begin by describing the base model, which does not in-
corporate our proposal and is essentially a modified version of White’s (2015, Ch. 3) model of
syntactic bootstrapping. We then show how to implement our proposal by modifying this base
model. We define an incremental learning algorithm that respects this model’s assumptions
and which we train on a dataset of syntactic distributions found in child-directed speech in
Section 6 (Dudley et al., in prep).

5.1 Base model

Our model has two components, corresponding to two levels of abstraction. At the higher
level—the competence level—the model describes the relationship between verbs’ semantic fea-
tures and their acceptability in frames with particular feature valuations. This is the level
described in the formalization in the last section. As we did in that section, we call the repre-
sentation of verbs’ semantic features S (for semantic features), the representation of the rela-
tionship between semantic features and syntactic distribution P (for projection rules), and the
representation of verbs’ syntactic distributions D.

At the lower level—the performance level—the model describes the relationship between
verbs’ acceptability in a particular syntactic context—what White (2015) refers to as its com-
petence distribution—and the syntactic contexts it actually occurs in—which White refers to as
its performance distribution. As is standard in the syntactic bootstrapping literature, we assume
that the learner observes the performance distribution—or at least input from which it can be
deterministically determined—and must infer the competence distribution.

5.1.1 The competence level

In the last section, we defined the competence level—the model’s representation of verbs’ se-
mantic components S and projection rules P—in terms of boolean values (zeros and ones).
In this section, to allow for uncertainty about which semantic components a verb has and to
model abstract projection rules, we define S and P in terms of probabilities. So, instead of the
deterministic model in (40), we propose the probabilistic model in (41).

(40) Deterministic model
S ∈ {0, 1}V×K
P ∈ {0, 1}K×F
D ≡ SP ∈ {0, 1}V×F

(41) Probabilistic model
S ∈ (0, 1)V×K

P ∈ (0, 1)K×F

D ≡ SP ∈ (0, 1)V×F

So, instead of (42), we now have something of the form in (43). One way to think of this
change is that S represents the model’s certainty that a verb v does or does not have a particular
semantic component k. If svk is close to one, then the model has high certainty that verb v has
semantic component k, and if svk is close to zero, the model has high certainty that verb v does
not have semantic component k.
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(42) S =


BELIEF DESIRE · · ·

think 1 0 · · ·
hope 1 1 · · ·
want 0 1 · · ·
· · ·

...
...

. . .



(43) S =


BELIEF DESIRE · · ·

think 0.95 0.20 · · ·
hope 0.89 0.86 · · ·
want 0.12 0.96 · · ·
· · ·

...
...

. . .


Similarly, we can define the projection rules P probabilistically. Analogously to S, P represents
the model’s certainty that a particular semantic component k does or does not project onto a
particular syntactic feature f . If pkf is close to one, then the model has high certainty that
semantic component k does project onto syntactic feature f , and if pkf is close to zero, the
model has high certainty that semantic component k does not project onto syntactic feature f .

(44) P =

(+TENSE -TENSE +COMP -COMP +IND -IND · · ·
BELIEF 1 0 0 1 0 0 · · ·
· · ·

...
...

...
...

...
...

. . .

)

(45) P =

(+TENSE -TENSE +COMP -COMP +IND -IND · · ·
BELIEF 0.96 0.03 0.06 0.92 0.14 0.02 · · ·
· · ·

...
...

...
...

...
...

. . .

)
The final component of the competence level, the syntactic distributions D, is defined in terms
of S and P. When S and P are boolean-valued, a natural way of defining the D is in terms of
disjunctive normal form. We can naturally extend this idea to probabilities using products, the
analogy of boolean ∧, and maximums, the analogy of boolean ∨.7

(46) dvf ≡
∨

k svk ∧ pkf
(47) dvf ≡ max{svkpkf | k ∈ SEMANTIC COMPONENTS}

Under the definition in (47), a verb’s syntactic distribution is determined by asking, for each
semantic components, what the probability is (i) that the verb has that semantic component
and (ii) that that semantic component projects onto a particular feature. The probability that
the verb takes a particular feature is then determined by the largest such probability.

This probabilistic model is useful for the model has little data to go on, but as the learner
gathers more information about a verb’s distribution, we would like it to converge toward a
set of semantic components it believes each verb has. To do this, we aim to induce sparsity
in the semantic component and projection rule representations as the model gets more data.
Inducing sparsity amounts to encouraging the model to set the entries of S and P close to
either one or zero. Thus, as the model gains more data, it should begin to look more and more
like the strict boolean version.

To induce sparsity, we place independent symmetric beta distributions on the entries of
S and P. These beta distributions are uniform—Beta(1,1)—to begin with, not preferring any
particular value in (0,1), but over the course of learning, they become sparser, preferring values

7This extension is a direct application of the fuzzy logic notion of a t-norm and t-conorm (Zadeh, 1965; Klement
et al., 2013). The specific t-norm we use here is known as the product t-norm. See also work in Probabilistic Soft
Logic (Kimmig et al., 2012).
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closer to zero or one, as the parameters of the distribution are tuned toward zero.8

5.1.2 The performance level

To complete the base model, we need some way of linking the competence level to the observed
data. We do this very straightforwardly by assuming that each datapoint consisting of verb v
and syntactic feature combination x is generated by sampling the value xf for syntactic feature
f from a Bernoulli distribution. The likelihood for performance level is then given in (48).9

(48) P(v,x | dv) =
∏

f Bernoulli(xf ; dvf ) =
∏

f d
xf

vf (1− dvf )
1−xf

In this way, the likelihood function for our model is very similar to Alishahi and Stevenson’s
(2008), though our representation of the competence distributions and incorporation of labeled
projection rules differs substantially from their model.10 The full model has a close resem-
blance to a Restricted Boltzmann Machine or Harmonium (Smolensky, 1986).

5.2 Incorporating featural anchors

Incorporating featural anchors into the base model is straightforward, though it cannot be
done in quite the same manner described above, wherein the projection rule is valued directly
by the relevant featural anchor. If it were valued this way, we would not gain the benefits of
partial matching that moving to a probabilistic model promises, since setting parts of the pro-
jection rule to one means that a particular syntactic context would need to match the projection
rule perfectly. We noted that this was a problem for verbs that do not allow complementizer
drop.

One way to remedy this is to treat main clauses as the same sort of object as subordinate
clauses—i.e., as sets of valued syntactic features associated with some special verb. If main
clauses are assimilated with subordinate clauses in this way, we allow the model to retain the
sort of uncertainty necessary for allowing partial matches, since whatever special verb main
clauses are associated with will—if the model works correctly—share a semantic component
with verbs like think.

The idea that main clauses are in fact subordinate clauses of a particular kind of verb (or
set of verbs) is an old idea instantiated most famously by Ross’s (1970) Performative Hypothe-
sis (see also Rizzi, 1997; Ambar, 1999; Krifka, 2001; Ginzburg and Sag, 2001; Speas and Tenny,
2004; Hacquard, 2010). Under the Performative Hypothesis, all main clauses are actually em-
bedded under special null verbal elements corresponding to the sorts of discourse moves de-
fined by Austin (1975) (see also Urmson, 1952). Following Hacquard (2010), and others, we
call the special element under which declarative main clauses are embedded ASSERT.

(Importantly, note that one need not accept the Performative Hypothesis as a hypothesis
about syntactic representation in accepting our model. The Performative Hypothesis merely
provides a clean way of implementing our model, which could be implemented in various
other ways.)

8For the current model, this is done globally by tuning the beta hyperparameters according to the total number
of datapoints seen. An alternative model might tune these beta hyperparameters in a verb-specific way according
to the amount of data seen for that particular verb.

9One thing that we do not model here is how the verb v is chosen. This could easily be incorporated into this
model by including a term for the prior probability of v, though we leave it out for simplicity. (See White 2015,
where such a model is discussed extensively.)

10Many other models work in terms of raw or modified count distributions (Schulte im Walde, 2000; Schulte im
Walde and Brew, 2002; Schulte im Walde, 2003, 2006; Korhonen, 2002; Buttery and Korhonen, 2005; Buttery, 2006).
This includes White’s (2015) on which the current model is based. One potentially useful thing about directly
modeling counts is that it allows a model to control for power law distributions by using particular kinds of like-
lihood functions, such as those founded on negative binomial distributions (Church and Gale, 1995) or Bayesian
nonparametrics (Goldwater et al., 2011). See Piantadosi 2014 for a review of power law distribution models.
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To encode the fact that BELIEF corresponds to a particular component, we initialize the
model in such a way that ASSERT has only a single semantic component (and no other seman-
tic components) with total certainty. We then stipulate that the semantic component ASSERT

certainly has is the BELIEF component, and we disallow the model from changing ASSERT’s
semantic components.

(49) S =



BELIEF · · · · · ·
ASSERT 1.00 0.00 · · ·
think 0.95 0.20 · · ·
hope 0.89 0.86 · · ·
want 0.12 0.96 · · ·
· · ·

...
...

. . .


This effectively forces the model to explain main clause features using only a single projection
rule—the one corresponding to the semantic component ASSERT certainly has—but it also al-
lows the model to have partial matches, since once it posits that other verbs have this semantic
component, the probability of other feature values—e.g., [+COMP]—increase.

This shows that our proposal requires only very minimal additions to current models of
syntactic bootstrapping. Indeed, using a similar strategy, our model can also be incorporated
into Alishahi and Stevenson’s model (though such an addition would run somewhat counter
to the constructionist (and constructivist) position that Alishahi and Stevenson take).

5.3 Learning algorithms

Many different kinds of learners can be defined to respect this model’s assumptions to vary-
ing degrees. Here, we define an incremental learner, which observes pairings of verbs and
syntactic features one at a time and makes inferences after each observation. This learner is
implemented using a form of stochastic projected gradient descent with adaptive gradient. We
do not delve into the specifics of this algorithm, though we do give a high-level description of
what it is doing.

The learner begins with randomly initialized matrices S and P of values in (0,1). Upon
receiving a particular datapoint consisting of a verb v and a syntactic structure represented as
a boolean string x, the learner calculates how likely that datapoint is given the current model
using the Bernoulli likelihood function given above and repeated in (50).

(50) P(v,x | dv) =
∏

f d
xf

vf (1− dvf )
1−xf =

∏
f maxk{svkpkf}xf (1−maxk{svkpkf})1−xf

The learner then attempts to change the semantic representation for the verb sv and the projec-
tion rules P so that they give a higher likelihood to the data—but not so much that the current
level of sparsity (closeness to zero or one) induced by the priors is violated. The adaptive gra-
dient piece of the learner ensures that the changes to the verb’s semantic representation are
not very extreme if the verb has been seen many times before but are potentially extreme if the
verb is very infrequent.

6 Experiment

We now apply our learning algorithm to a dataset of English child-directed speech. For the
purposes of this experiment, we assume two semantic components: one associated with AS-
SERT (BELIEF) and the rest not associated with any particular semantic component. For a full
model of syntactic bootstrapping, more components would be necessary. For instance, White
(2015) and White et al. (under reviewa) show that the syntax carries quantifiable informa-
tion about propositional attitude verb semantic components like FACTIVITY, COMMUNICATIV-
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ITY, PERCEPTION, etc. But since this experiment serves more as a proof of concept and since
it makes the interpretation easier, we do not incorporate more components into the current
model. Furthermore, we only analyze the component corresponding to belief, since this is the
only one our model actually labels.

We begin by describing the dataset along with some necessary preliminaries on correcting
for sampling bias in this dataset. We then show the results of fitting our algorithm to these
corrected data.

6.1 Data

Dudley et al. (in prep), who investigate the cues to factivity available in the syntactic (perfor-
mance) distributions found in child-directed speech, annotate the syntactic features associated
with 77 clause embedding predicates found in the Gleason corpus (Masur and Gleason, 1980)
in CHILDES (MacWhinney, 2014b,a). These predicates are shown in (51).

(51) be able, be afraid, agree, be anxious, approve, ask, assure, be aware, believe, bet, care,
be certain, complain, consider, be curious, decide, discover, doubt, be eager, enjoy, ex-
pect, explain, figure, find, forget, gather, be glad, guess, be happy, hate, hear, hope, ig-
nore, imagine, be important, be impossible, interest, be interesting, judge, know, learn,
like, love, manage, mean, need, be nervous, notice, order, predict, prefer, pretend, pro-
pose, be proud, prove, realize, recall, regard, remember, remind, say, see, seem, show,
be sorry, suppose, be sure, tell, think, try, understand, want, be willing, wish, wonder,
be worth

For each of the predicates with less than 100 occurrences, Dudley et al. annotate all occur-
rences; and for each predicate with 100 or more occurrences, they annotate a randomly se-
lected 100 occurrences. Each occurrence is annotated for a wide variety of features, including
features of the predicate’s subject as well as non-subordinate clause complements. Here, we
focus only on features of the subordinate clause, listed in (52).

(52) a. [+/- EMBEDDED SUBJECT]
b. [+/- COMPLEMENTIZER]
c. [+/- TENSE]
d. [+/- INFINITIVAL]

This means that each observation is constituted by a verb paired with a string of eight boolean
values—one for each valuation of the feature. (As a reminder, the reason we need distinct
boolean values for each feature valuation is that some verbs—e.g., hope, remember, decide, etc.—
can occur in subcategorization frames with different valuations for a features—e.g., hope that,
which is [+ TENSE], and hope to, which is [- TENSE].)

6.2 Resampling procedure

We noted above that in Dudley et al.’s data the proportion of datapoints for each verb does
not match its proportion in child-directed speech. This means that lower frequency verbs
are overrepresented in this dataset. We correct for this overrepresentation using a stratified
resampling procedure. The basic idea behind this procedure is that we need to replicate the
sort of evidence a learner might actually observe, and so we need to make sure the dataset is
representative of the true verb frequencies.

To do this, we first count the total number of tokens in CHILDES for each of the 77 verbs
in the dataset, “hallucinating” a count for ASSERT equal to half the sum of the frequencies for
these 77 verbs. We then find the frequency of each verb relative to the 77 others plus ASSERT.
Using this relative frequency, we draw 100 samples from a multinomial distribution (n=25000)
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Figure 1: Mean probability of BELIEF and NONBELIEF semantic components over 100 runs

representing the number of times each verb will be seen in each resampled dataset. For each
sample, for each verb, datapoints are then drawn uniformly without replacement until that
verb’s count for that sample is reached.

6.3 Fitting

We run our algorithm on each of these resampled datasets described above—reinitializing
the algorithm between each run and randomly permuting the order in which the algorithm
observes datapoints in that dataset. Over the course of learning, we gradually increase the
sparsity of the semantic representations and the projection rules by decreasing the parame-
ters of the beta prior from α=β=1 to 0.5 using a function very similar to search-then-converge
(Darken and Moody, 1990). In practice, this is sufficient to induce the algorithm to use only
two values in the semantic representations and projection rules—one very close to zero and
one very close to one—and the model found such a solution on all trials for all verbs. For the
purposes of reporting the results, we discretize these values to zero and one, respectively, and
report the proportion of times over the 100 runs that this value was one.

6.4 Results

Figure 1 shows the mean probability of the BELIEF and NONBELIEF semantic components over
the 100 runs of our algorithm. We see that on virtually all runs, the model learns that think
has a BELIEF component and that want does not. Further, as we expect, the BELIEF component
projects onto exactly the main clause features, and no others.

Further, the algorithm converges to this solution for think and want relatively quickly. Fig-
ure 2 shows the mean probability of the BELIEF and NONBELIEF semantic components over the
100 runs of our algorithm as a function of the number of datapoints the algorithm has seen—
i.e., not just the number of observations of think or want alone. We see that, by about 1500
observations of the 25000 total observations, the algorithm has learned (i) that want does not
have a BELIEF component but does have a NONBELIEF component and (ii) that think does not
have a NONBELIEF component (at least when only two components are considered).
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Figure 2: Mean probability of BELIEF and NONBELIEF semantic components for think and want
over 100 runs as a function of number of total datapoints seen

Interestingly, the model takes longer (on average) to ascertain that think has a BELIEF com-
ponent. In looking at individual runs of the algorithm, this appears to arise from two phe-
nonema. First, think is seen half as often as want, and so it is seen less and thus updated less
often. This frequency difference, however, does not explain the differential speed with which
the model approaches certainty that think does not have a NONBELIEF component. And so, sec-
ond, this differential appears to be explained by the fact that the change in the probability of
a BELIEF component for think shows higher sustained variability than that for the NONBELIEF

component. This can be seen in Figure 3 and suggests that the learner has more uncertainty
about whether think has a BELIEF component for longer. This is perhaps unsurprising, since
think, and most other verbs, take more than just a single complement type. For instance, one
fairly common complement type found with think is the propositional anaphor so.

(53) I think so.

But though so in this case likely refers to the same type of thing as a tensed complement—i.e.,
a proposition—our model cannot take advantage of this, since (i) it was not coded for, and (ii)
even if it were, it would not share syntactic features with a declarative main clause. We return
to the question of how a learner might use information from an anaphor like so in Section 7.

Turning now to the other verbs in Figure 1, we see that our algorithm does remarkably
well in labeling the correct verbs with a BELIEF component. For instance, know, hope, wish, and
tell are all labeled with a BELIEF component more than half the time. Further, verbs like hope
and wish, which also have DESIRE components are labeled with a NONBELIEF component fairly
often. This is quite surprising, since these verbs are seen very rarely on average: hope and wish
are only seen 48 and 31 times on average, respectively, out of the 25000 datapoints the model
sees total. Compare these numbers to the number of times think (1337) and want (2889) are
seen on average.

Further, the behavior for hope in particular aligns well with recent experimental findings. In
an experiment that makes both beliefs and desires salient, Harrigan (2015) and Harrigan et al.
(2016) show that three year old English learners tend to attribute to hope a BELIEF meaning
when it appears with a tensed subordinate clause but a DESIRE meaning when it appears with
an infinitival subordinate clause. This suggests that their semantic representation of the verb
is not fully stable—their interpretation being highly influenced by syntactic context.
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Figure 3: Mean and standard deviation of probability increment for think over 100 runs as a
function of number of total datapoints seen

Other verbs do not fair as well, including say and the two most frequent perception verbs
see and hear. The verbs do not appear to be associated with either semantic component for two
reasons. First, say takes many quotes of varying levels of syntactic complexity—from one word
quotes to phrasal quotes to fully clausal quotes—and all three take noun phrase complements
fairly often.11 These structures are not captured by the projection rules in this experiment.
This actually may be a problem more generally for a main clause, and it may require us to
posit something that weights the clausal complements that are observed more highly in the
likelihood function. This approach seems reasonable given the fact that noun phrase comple-
ments are not particularly informative in this domain (White et al., under reviewa), though
ideally we would like the model to learn the correct weighting.

Second, and pertaining mostly to the perception verbs, the fact that small clause comple-
ments, such as (54), are untensed may push the model away from viewing perception verbs as
having a BELIEF component.

(54) You should have heard her sing in the car last night.

(55) I heard that she sang in the car last night.

One possibility with regard to the perception verbs is that it is only learned later that (some of)
these verbs have a belief component. Indeed, the hear in (55) may not even be the same hear as
in (54).

6.5 Discussion

In this experiment, we applied the learning algorithm we define in Section 5 to Dudley et al.’s
(in prep) dataset of syntactic distributions from child-directed speech. We showed that this
algorithm does remarkably well in labeling the correct verbs with a BELIEF component, with
only a few (interesting) exceptions.

11The reason say takes so many quotes likely arises from a bias in the corpus. Part of the corpus contains tran-
scripts of book reading.
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7 General discussion

In this paper, we propose a novel solution to the labeling problem in syntactic bootstrapping
that is a hybrid of the top-down and bottom-up approaches. Under this proposal, we retain the
framework posited by the top-down approach, which solves the labeling problem by positing
innate projection rules, but we allow these rules to be abstract in a highly constrained way.

We motivate this proposal by noting that neither the top-down nor the bottom-up ap-
proaches solve the labeling problem for belief and desire verbs. The top-down approach is
brittle in the face of cross-linguistic variability, while the bottom-up approach makes unrealis-
tic assumptions about the data learners have access to.

We show that our proposed solution can deal with the labeling problem given theoretically
justified featural anchors for particular labels, and using belief and desire predicates as a case
study, we implement a computational model that incorporates the labeling mechanism we
propose. Finally, we provide a proof of concept fit of this model to data derived from child-
directed speech.

In the remainder of the paper, we discuss the implications of this work for the theory of
verb learning and its relationship to linguistic theory more generally.

7.1 The explanatory power of featural anchors

The main substantitve addition we make in this paper to the theory of syntactic bootstrapping
is the notion of a featural anchor, which is itself a class of structures known prior to the selection
of a projection rule. One question this addition raises is to what extent learners can easily
discover the featural anchor itself. A deflationary response to our proposal might argue that
we have merely pushed the job of verb learning back to discovering which classes of structures
constitute featural anchors; isn’t the job of figuring out which syntactic features are indicative
of a particular anchor just as hard as learning a verb itself?

Yes and no. Yes, because it is true that, at the end of the day, one must identify some
structure as a declarative main clause, and this must presumably be done by perceiving that,
in using a particular structure, an utterer of a declarative main clause intends the utterance
to be taken as part of a particular conversational move—such as an assertion (Austin, 1975;
Stalnaker, 1978). That is, the learner must be able to identify the illocutionary force intended
for the utterance.

No, because illocutionary force is a concept that is presumably prerequisite to learning a
language in a first place.12 Indeed, children appear to be adept at recognizing an utterance’s
illocutionary force quite early (Spekman and Roth, 1985). This is to say that, though language
is clearly not for communication, the data a learner uses to learn their language tends to come
wrapped in communicative acts, which the learner presumably has no problem perceiving as
such.

And no, because the mapping between illocutionary force and syntactic structure is rela-
tively stable within a language: assertions, at least as conveyed by clauses, are conveyed by
clauses with the same syntactic features—in English, [+TENSE, -COMP, . . .]. And insofar as an
assertion is not conveyed by a clause—such as when it is conveyed by a polarity particle or a
fragment—we submit that, if a learner has enough syntactic knowledge to represent a clause
as a set of features, they have enough syntactic knowledge to represent that the valuation of
those features is dependent on the fact that that clause is a syntactic object in the first place.

This question of recognizing a syntactic class of complements, such as a clause, is related
to the issue we saw our algorithm having with nominal and propositional anaphor comple-
ments, like so. These complements cannot be valued for the same sorts of features that a clause
can be—indeed, they don’t appear to be valued as such at any level of syntactic representation

12Thanks go to Alexander Williams for driving this point home to us.
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(Hankamer and Sag, 1976)—but as it stands our model views them as simply unvalued. But
rather than view them as unvalued for these features, it seems that the distinction in syntac-
tic class must be baked into the model itself. That is, the syntactic features the model pays
attention to in making an inference from a particular piece of data must be dependent on the
syntactic class involved in that datum. In the abstract, we need to incorporate some decision
tree-like representation into the model. One way this might be implemented is by employing
a likelihood function that incorporates a hurdle model. (See White et al. under reviewb for a
recent use of hurdle models in a related domain.)

Beyond providing a case for a decision tree-like structure for syntactic feature valuation,
the case of propositional anaphors may also suggest that the mechanisms used by syntactic
bootstrapping to infer a verb’s meaning may need to incorporate a notion of semantic type
over and above that given by syntactic type. (See White and Rawlins in prep for evidence that
semantic type signatures can be extracted from syntactic distribution.)

7.2 Generalizing our argument

The analysis of the belief-desire distinction that we give in Section 3 takes the following general
form.

1. the semantic class of verbsC—e.g., belief verbs—in languageL tend to embed structures—
e.g., subordinate clauses—with features FL—e.g., TENSE, V2, etc.

2. features FL are all valued in structures XL, which is an independently motivated class of
structures found in all languages L ∈ L

3. FL for all L ∈ L varies on only features FL

4. this suggests

(a) an abstract projection rule C → [+/-f : ∀f ∈ FL]
(b) a featural anchor XL for each language L

One question that arises is to what extent there are other abstracted projection rules and
featural anchors. There seems to us to be at least two potential candidates: preferential verbs,
like want, and factive and interrogative verbs like know and wonder.

With respect to preferential verbs, as we noted in Section 3, preferential verbs seem to have
a cross-linguistically variable distribution. For instance, one could not label preferentials by
assuming they were tenseless, subjectless, or lacked a complementizer, as they do in English,
since, e.g., in Spanish, all of these things are present (assuming that the Spanish learner as-
sumes a covert pronoun in the case of pro-drop).

(56) a. I want to go home.
b. Quiero

want.1S.PRES

que
that

vayas
Peter

a
go.PRES.SBJ

la
to

casa.
the house.

This may suggest that one should expect a featural anchor for the projection rule labeled with
the DESIRE component. One plausible such anchor are imperative clauses. Note that in both
English and Spanish, imperatives share features with the sorts of subordinate clauses found
under preferential verbs.13

(57) a. Go home.
13One difficulty that may arise here, however, is that the mapping between subjunctive and preferentiality is not

necessarily as robust as that between, e.g., indicative and representationality.
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b. Vayas
go.2S.PRES.SBJ

a
to

la
the

casa.
house.

This may be related to the fact that preferential verbs can be used to make indirect requests, as
we saw in Section 3.

(58) I want you to go to your room!

With respect to factive and interrogative verbs, Dudley et al. (in prep) show that a large part of
children’s experience with know is in the frame do you know Q? We would like to suggest that,
here again, the child may be able exploit the syntactic parallels between direct and indirect
speech acts: know is used to ask indirect questions. Children might infer from this parallel that
the meaning of know must be one that relates the subject to the answer of that question.

(59) Do you know where the keys are?

These two additional examples may suggest that learners are able to exploit the relationship
between various kinds of main clause syntax—declarative, imperative, and interrogative—and
the syntax of subordinate clauses more generally. In future work, we aim to investigate this
possibility.
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