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Abstract We develop a probabilistic model of S(emantic)-selection that encodes
both the notion of systematic mappings from semantic type signature to syntac-
tic distribution—i.e., projection rules—and the notion of selectional noise—e.g.,
C(ategory)-selection, L(exical)-selection, and/or other independent syntactic pro-
cesses. We train this model on data from a large-scale judgment study assessing the
acceptability of 1,000 English clause-taking verbs in 50 distinct syntactic frames,
finding that this model infers coherent semantic type signatures. We focus in on type
signatures relevant to interrogative and declarative selection, arguing that our results
suggest a principled split between cognitive verbs, which select distinct proposition
and question types, and communicative verbs, which select a single hybrid type.

Keywords: semantic selection, attitude verbs, experimental syntax, computational semantics

1 Introduction

It has long been assumed that a verb’s syntactic distribution is determined by at least
two kinds of lexical information: (i) the verb’s semantic type signatures and (ii) its
morphosyntactic features (Chomsky 1965; Gruber 1965; Fillmore 1970; Zwicky
1971; Jackendoff 1972; Carter 1976; Pinker 1984, 1989; Grimshaw 1990; Levin
1993; Chomsky 1973; Bresnan 1972; Grimshaw 1979; Pesetsky 1982, 1991 among
others). The first of these is often termed S(emantic)-selection (Grimshaw 1979;
Pesetsky 1982, 1991); the second goes under various names, though perhaps the
most neutral term is subcategorization (Chomsky 1965). Standard distributional
analyses in the theoretical literature have had tremendous success in uncovering the
nature of S-selection and its relationship to the syntax—i.e., projection rules. But as
theories scale to the entire lexicon, these approaches hit a limit, imposed by the sheer
size of lexica and by bounds on human analysts’ memory and processing power.
In an effort to address these limitations, we develop a combined experimental-
computational methodology for studying the selectional behavior of verbs at the
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scale of the entire lexicon. The driving idea behind this method is to algorithmically
implement the procedures by which human analysts form generalizations regarding
selection and then apply these algorithms to large-scale data sets. To implement this
idea, we first formalize and abstract existing theoretical methods for investigating
selection, and then we map this abstraction into a computationally implemented
inference algorithm that can operate on data of arbitrary size. We demonstrate our
model’s use by applying it to a notoriously challenging problem in lexical semantics:
understanding S-selection in the domain of clause-embedding verbs.

To detail how an analyst might use our model’s results, we focus in on a particu-
larly tough problem in this already challenging domain: explaining the distribution
of declarative and interrogative complements. A major question in this domain is
why superficially quite similar verbs, like believe, wonder, and know, show such
different distributional behavior with respect to these types of complements.

(1) a. John believed {that, *whether} Mary went to the store.
b. John wondered {*that, whether} Mary went to the store.
c. John knew {that, whether} Mary went to the store.

This question has a long history in the semantics literature (Karttunen 1977a,b;
Groenendijk & Stokhof 1984; Heim 1994; Ginzburg 1995; Ginzburg & Sag 2001;
Lahiri 2002; George 2011; Uegaki 2012, to appear, 2015; Rawlins 2013), with many
potential answers. Our aim 1s to relate our modeling results to these proposals and to
argue that current proposals likely need to be relativized to particular verb classes,
split in particular between cognitive and communicative verbs.

The remainder of the paper is laid out as follows. In Section 2, we review the
two classic architectural proposals regarding the relationship between S-selection
and syntactic distribution laid out in Grimshaw 1979, 1981 and Pesetsky 1982, 1991.
In Section 3, we report on our large-scale experiment, which we use as training data
for our model. In Section 4, we describe our model, which embeds an abstraction
of Grimshaw’s and Pesetsky’s architectures, and we fit it to the experimental data
reported on in Section 3. In Section 5, we analyze a portion of the modeling
results, relating these results to proposals regarding the distribution of declarative
and interrogative complements. And in Section 6, we conclude with remarks on how
to extend the computational model beyond this case study.

2 Selection and clausal embedding

Clause-embedding verbs played a central role in much of the early literature on
S-selection (Grimshaw 1979; Pesetsky 1982) and its syntactic relatives C(ategory)-
selection (Bresnan 1972; Chomsky 1973) and L(exical)-selection (Pesetsky 1991,
1995). In this section, we review this literature and formalize the logical structure of
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these approaches with the goal using this formalization as the basis for modeling.

2.1 Additive and multiplicative approaches

One of the central phenomena that the literature on selection must explain is the fact
that semantic type signatures are not in one-to-one correspondence with syntactic
type signatures (subcategorization frames). Consider the verb ask. Ask takes both
interrogative complements (2a) and noun phrase complements (2b).

2) a. John asked what time it was.
b. John asked the time.

If projection—i.e., the mapping from semantic type signatures to syntactic type
signatures—were one-to-one, we would expect distinct interpretations for (2a) and
(2b). But as Baker (1968) notes, there is only one interpretation: the noun phrase in
(2b) is a so-called concealed question (CQ) (Heim 1979; Romero 2005; Nathan 2006;
Frana 2010; Aloni & Roelofsen 2011). This might suggest that projection maps
a question-selecting type signature—[_ Q]—onto two different subcategorization
frames—([_ S] and [_ NP]—as schematized in (3). This pairs naturally with a range
of proposals for coercing nominal expressions into question denotations.

3 [LQl — {[LS].[_NP]}

One of the central puzzles in the concealed questions literature has been that a
projection rule like (3) overgenerates, since not all interrogative-selecting verbs
select for nominal expressions—wonder being a standard example.

4 a. John wondered what time it was.
b. *John wondered the time.

The overgeneration of (4b) is problematic for a view wherein the only way to license
a particular syntactic structure is by projection from a semantic type signature.
Two approaches have been taken to resolving this problem, both of which rely on
idiosyncratic lexical properties. Basically, it is either a listed fact about ask that it
takes concealed questions, or it is a listed fact about wonder that it does not.!

More specifically, the first possibility is to back the more general mapping (3) off

1 A third possibility is of course that there is some systematic generalization about the mapping that
covers every case. For concealed questions, the closest we are aware of to complete coverage is
Nathan’s (2006) proposal that it is the joint selection of questions and propositions that licenses
concealed questions. This proposal still undergenerates for some predicates, including ask. However,
our goal in discussing concealed questions here is not to find the solution, but use it as an example of
the key possibilities surrounding S-selection and syntactic subcategorization.
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to the more specific mapping (5), thus undergenerating concealed questions for ask.

o) [LQl—{[LSh

One then needs to say how (2b) gets the interpretation it does—e.g., by stipulating
a link between [_ Q] and [_ NP] in the lexical entry of ask itself. This approach is
essentially the one that Grimshaw (1981) takes. In this system, lexical idiosyncracy
is fundamentally additive: one starts with a syntactic distribution defined in terms of
S-selection and projection rules like (5) and then adds to those distributions based
on some independent lexical information, yielding the verb’s observed distribution.
The second approach, introduced by Pesetsky (1982, 1991) using the mechanism
of a verb’s abstract case assignment, retains (3) and then lexically filters out the
overgenerated (4b). In contrast to the first approach, the second is fundamentally
multiplicative (or intersective): one starts with a syntactic distribution defined in
terms of overgenerative projection rules like (3) and then intersects those with some
independent distributional information to yield the verb’s observed distribution.
Underpinning both approaches is the need to represent lexical properties (how-
ever characterized) that are unpredictable from the perspective of projection. We
term such properties (lexical) noise. This term is intended to cover whatever id-
iosyncratic properties are employed to ‘correct’ the idealized syntactic distributions
predicted by S-selection and projection alone to the observed syntactic distribution.
To develop the mechanics of these two approaches more clearly, we spend the
next section formalizing them. We do this in two steps: first, we give a formalization
in terms of function composition and set union/intersection; then, we show how to
isomorphically map this formalization into one that traffics in boolean algebras. This
second formalization is what we use as a base for our computational model.

2.2 A formalization of S-selection

We begin by formalizing the additive (Grimshaw-style) and multiplicative (Pesetsky-
style) systems in terms of function composition and set union/intersection. Suppose
we are given the function S-SELECT in (6). This function tells us that ask and wonder
have only the semantic type signature [_ Q].”

ask — {[_Ql}

6) S-SELECT = wonder — {[_Ql!

Under an additive system like Grimshaw’s, we define a function PROJECTION| (7a)
that, when composed with S-SELECT, undergenerates CQ sentences like (2b). A

2 We do not intend S-SELECT as an exhaustive representation of the semantics of ask and wonder. We
use it only for the purposes of illustration. For instance, ask likely also S-selects [_ (Ent) (Q)].
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function NOISE; (7b) then adds in the missing parts of the DISTRIBUTION; (7¢c).>

[LQl — {[LSI}
[_Ent] — {[_NP]}

ask — {[_NP]}
wonder — {}

@) a. PROJECTION| =

b. NOISE| = {
c. DISTRIBUTION| = S-SELECT o PROJECTION; U NOISE;

Formalizing a multiplicative system like Pesetsky’s requires only a minor change to
(7): functions PROJECTION, and NOISE; are identical in form (though not content) to
PROJECTION; and NOISE, and DISTRIBUTION; changes the union to an intersection.

[.Ql — {[LSL[_NPJ}
[_Ent] — {[L NP]}

ask — {[_S],[_NP]}
wonder — {[_S]}

8) a. PROJECTION; =

b. NOISE; = {
Cc. DISTRIBUTION; = S-SELECT o PROJECTION, N NOISE;

This close formal relationship suggests a generalization of the additive and multi-
plicative explanations, which we take advantage of to build our model. The basic
idea is to leverage the tight relationship between fields of sets and boolean algebras
known from Representation Theory (Stone 1936 ef seq) to reconstruct the additive
and multiplicative approaches as boolean semiring modules. This in turn allows us
to employ standard inference algorithms that can be defined over these modules.

Translating the above formalizations into boolean algebras is straightforward.
The general procedure is to define for each function f €{S-SELECT, PROJECTION],
NOISE [, PROJECTION,, NOISE> }, a matrix of indicators M s.

9 Myli,jl=1iff (i, ) € f, Vi € DOM(f), Vj € CODOMAIN(f)

This yields matrices § = Ms_sgrect, Ik = Mperosectiong, and €, = Myoisg, - Figure
1 shows what these would look like for our running example.

We also need the analogue of function composition for the matrix forms S and
IT;. This is given by the disjunctive normal form in (10).*

(10)  SII;[VERB,FRAME| = \/1ypp S[VERB, TYPE| AI;[TYPE, FRAME]

3 This formalization ignores the fact that, in practice, (7b) would either need to specify which semantic
type signature the subcategorization frame is related to or give some general rule for determining it.

4 The definition in (8c) is just matrix multiplication for boolean algebras, which replaces sums with
disjunctions and products with conjunctions.
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[LQl [_Ent]
S— ask 1 0
~ wonder 1 0
[LS] [_NP] [LS] [_NP]
_ Q] 1 0 _ask 0 1
I, = [_ Ent] ( 0 1 ) 81= yonder ( 0 0 )
[LS] [_NP] [LS] [_NP]
_ Q] 1 1 _ask 1 1
I, = [_ Ent] ( 0 1 ) £2= yonder ( 1 0 )

Figure 1  Boolean model for the running example

This allows us to define boolean matrices D; = SII; VvV €, and D, = STI, A €, for
DISTRIBUTION| and DISTRIBUTION,. The only difference between D| = D5 is how
the information that is independent of S-selection and projection is handled.

We will eventually want to allow models to consider both of these possibilities
at the same time—i.e., to learn whether particular bits of noise are additive or
multiplicative. To this end, we generalize these approaches into a single approach
that uses bitwise XOR (notated @), which generates a 1 at a position iff exactly one
of the inputs is 1. Instead of combining &; with STI; via (bitwise) V or A, we instead
specify an € in terms of & that is combined via &.

(11) a. D1=SH1\/£1=SH1€B((81\/SH1)@SH1)=SH1€B8/1
b. Dz:SH2A£2:SHZ@((SZ/\SI'Iz)eBSl'Iz):SH2@£’2

The bit-flipping’ properties of & allow for an €] that contains a 1 where STI;
makes the wrong prediction and a 0 wherever it makes the right one—i.e. a 1 now
represents a case where the observed lexical distribution is different (in whichever
way is relevant) from what the projection rules themselves would lead to. The
transformed noise matrices for the running example are shown in Figure 2.

In statistical terminology, €, can be thought of as a matrix of residuals or error
matrix for STI;. The sum over €| is then the total error or loss for STI;, abstracted
over both additive and multiplicative lexical noise.

2.3 Upshots

The upshot of this translation and generalization of the additive and multiplicative
approaches is two-fold. First, because we now have a way of representing S-
selection and projection as matrices, we can take full advantage of algorithms that
optimize over matrices. This is important because it allows us to construct inference
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[_S] [_NP] [LS] [_NP]
3/1 _ ask 0 1 8,2 _ ask 0 0
wonder 0 0 wonder 0 1

Figure 2  Transformed noise matrices for running example, for use with XOR.

algorithms that induce representations of matrices like S-SELECT, PROJECTION, and
NOISE from data about verbs’ observed syntactic distributions. A good chunk of
Section 4 is devoted to showing how this is done.

Second, it means that, as long as we deal with lexical idiosyncrasy correctly—by
ensuring that our representation of NOISE is an error matrix—we can remain agnostic
about whether a Grimshaw- or Pesetsky-style system is correct. Taking advantage
of this second upshot is highly dependent on the nature of the data at hand, and we
will in fact need to further generalize the model beyond binary acceptability and
XOR. Distributions representing selectional information are almost never actually
representable in bits, even when we consider standard intuition-based judgment
methods. That is, the claim that some set of verbs is grammatical with some set of
surface syntactic frames involves the aggregation of acceptability judgments about
particular sentences constructed from those frames. Acceptability itself likely must
be treated, if not continuously, at least as ordinal (Chomsky 1965; Sprouse 2007b,a).
Before showing how to generalize from simple bitwise XOR to acceptability data, we
turn next to the exact form of data we will be modeling in this paper: our large-scale
acceptability judgment experiment.

3 The MegaAttitude dataset

In this section, we report on the collection of data relevant to the syntactic distri-
butions of essentially all clause-embedding verbs in English. By our count, there
are on the order of 1,000 such verbs. The main obstacle to studying such a large
number of verbs is obtaining the relevant data. One possible source might be syn-
tactic distributions found in a corpus.” But the use of corpora—even very large
corpora—introduces extra complications, such as genre effects (Roland & Jurafsky
1998) and data sparsity for low frequency verbs. Instead, we use a more direct
measure of native speakers’ competence: acceptability judgments.®

5 See Lederer, Gleitman & Gleitman 1995; Schulte im Walde 2000; Schulte im Walde & Brew 2002;
Schulte im Walde 2006, 2003; Korhonen 2002; Buttery & Korhonen 2005; Buttery 2006; Alishahi &
Stevenson 2008; Barak, Fazly & Stevenson 2012, 2013, 2014a,b; White 2015 among others.

6 The model we present in Section 4 does not require access to acceptability judgment data (see White,
Hacquard & Lidz under reviewa for preliminary results on corpus data). Indeed, it could in principle
be applied to any type of data for which an appropriate link function can be designed. See, e.g.,
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come happen

((((((

tell

Figure 3 1,000 verbs in the MegaAttitude data set.

3.1 Methodology and materials

To gather this more direct measure, we adopt a methodology introduced by Fisher,
Gleitman & Gleitman (1991) and adapted by White, Dudley, Hacquard & Lidz
(2014) to the study of clause-embedding verbs; here we adapt this method to a
very large data set.” In this methodology, one (i) selects a set of verbs and a set
of subcategorization frames, (ii) computes the cartesian product of these sets, (iii)
constructs sentences for each element of this cartesian product, and (iv) gathers
acceptability judgments about those sentences on an ordinal (1-7) scale.

We selected 1,000 clause-embedding verbs to include in our large-scale ex-
periment using a search of VerbNet (Kipper-Schuler 2005) seeded by the clause-
embedding verbs discussed in Hacquard & Wellwood 2012; Anand & Hacquard
2013, 2014; Rawlins 2013; White et al. 2014. This seed contained ~500 verbs.
Figure 3 shows all 1,000 verbs.8

We constructed 50 subcategorization frames representing different combinations

White’s (2015) proposed negative binomial link, which is directly portable to our model.

7 We validated the resulting methodology in three pilots. We do not have space here to describe these
pilots in detail, but we report on them in a longer paper that is in preparation.

8 In the electronic version, this image is high-enough resolution to zoom in quite close.
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domg

to do something

to have

that something happen

which thlng happened

that ﬂomethlng happened}

(was) VERBed
VERBed someone

whether something happen
that something would happen
Wthh thing happened

that something happened
{ Whether Something would happen
VERBed to someone
Someone

(was) VERBed

somethmg (to someone)
someone do something
which thing to do

VERBed for someone
{ whether

about something
40U whether something happened

} to do something

Something happened, I VERB

Figure 4 50 frames constructed for the MegaAttitude experiment.

of syntactic features purported to be relevant to clause-embedding verb semantics
(see White 2015 for a review). Six basic types of syntactic features were employed,
listed in (12). Figure 4 shows the 50 frames constructed using these features.’

(12) COMPLEMENTIZER: that, for, 0, whether, D-linked WH
EMBEDDED TENSE: past, future, infinitival, present participle, bare
MATRIX OBJECT: none, one, two

MATRIX PP: none, to, about

EMBEDDED SUBJECT: true, false

PASSIVIZATION: true, false

me a0 o

We constructed sentences from verb-frame pairs in a way similar to Fisher et al.
1991 and White et al. 2014, but employing the following constraint: all lexical
categories in the sentence besides the verb should be as bleached as possible. This

9 Passivized sentences, which all had active counterparts, were included to capture verbs that take
expletive subjects. This was done instead of including explicit expletive subject frames because such
frames are systematically ambiguous between expletive and referential readings, and thus they do not
pick out solely the expletive subject-taking verbs but rather the somewhat unnatural class of expletive
subject-taking verbs plus referential subject verbs that can take an inanimate subject (see White et al.
2014; White, Hacquard & Lidz under reviewb; White 2015 for discussion). Using passivization
provides a cleaner cut in that expletive subject frame are exactly those verbs that are good in the
passive but bad in the active, though at the cost of missing verbs that cannot passivize—e.g., verbs of
relevance (Karttunen 1977a).
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z -~ Idealized —— Observed
Semantic Projection . Lexical .
Type | Rules —— Syntactic —— Noise |~ Syntactic
Distribution Distribution

~ ~

Figure 5  Relationships between various model components (solid arrows) and
schematization of inference (dashed arrows)

constraint is intended to avoid typicality effects induced by, e.g., sentence plausibility
(see Schiitze & Sprouse 2014). We deployed this constraint by instantiating all NPs
as either someone or something, all untensed VPs as either do something or have
something, and all Ss as COMP+something happen+TENSE/MODALITY. Figure 4
shows the full set of frames. The 50,000 resulting sentences were partitioned into
1,000 lists of 50 such that each verb and each frame occur at most once in each list.

3.2 Participants

727 unique participants were recruited through Amazon Mechanical Turk to rate
sentences in the 1,000 lists of 50. Participants were allowed to respond to as many
unique lists as they liked, but no one participant rated the same list twice. Five ratings
were obtained per sentence—i.e., five unique participants rated each list—and each
participant responded to a median of four lists (mean: 6.9, min: 1, max: 56). The
end result is a data set with 250,000 ordinal acceptability judgments.

These data were then filtered to remove data from participants that showed poor
agreement with other participants. A total of 27 participants were removed in this
way.'” The final filtered data set had 35,642 items with five judgments, 12,506 items
with four judgments, and 1,852 items with three judgments.

4 Computational model

In this section, we develop our computational model of S-selection based on the
formalization laid out in Section 2. This formalization has five components, whose
relationships are schematized in Figure 5 as solid arrows. The only thing the model
gets to learn from are observed syntactic distributions—in the current case, the
acceptability judgment data described in the last section. The goal is to use these

10 Space does not allow for a full explication of this somewhat complex filtering procedure, which takes
into account factors such as the list each item was found in, the verb that the item instantiates, the
frame that the item instantiates, and the item itself.
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data and the aforementioned relationships to (i) infer back through the lexical noise
to the idealized syntactic distributions and (ii) infer back through the projection
rules to the semantic type representations. In what follows we outline the main
components of inference. There are four key parts: (i) a probabilistic version of the
boolean formalization with the structure shown in Figure 5, (ii) a way of linking this
probabilistic model to the ordinal data, (iii) optimization procedures for training the
model, and (iv) a model selection procedure to find the best model.

4.1 A probabilistic model

To conduct the inference schematized in Figure 5, we must specify some method
by which search the space of possible representations for an optimal one. One
possibility is to take exactly the model specified in Section 2 and attempt to find
boolean matrix representations of S-selection and projection that minimize the
amount of lexical noise we have to posit. There are two issues with this approach.
The first is that this optimization over boolean matrices is intractable due to the sheer
number of possibilities: with V verbs, T semantic type signatures, and F frames,
there are |{0,1}V*7 x {0,1}7*F| = 2VT+TF configurations to search over. The
second issue is that encoding ordinal judgments as boolean values loses potentially
useful information about relative acceptability in the ordinal judgments. To address
these issues, we develop a probabilistic version of the formalization in Section 2.

As a reminder, this formalization consists of four interrelated matrix representa-
tions: the S-selection matrix § € {0,1}V*7; the projection matrix IT € {0,1}7%F;
the error/noise matrix € € {0, 1 VXF. and the syntactic distribution matrix D €
{0,1}V*F. D is deterministically related to § and by D = STI® €.

Going forward, it is useful to have a variable name for the idealized syntactic
distribution matrix STI. We refer to this matrix as D.

(13) D, f]=SOy,f] =V, Sy O, f]

We convert this formalization into a probabilistic model by ‘wrapping’ each matrix
element with a probability function, making the following independence assump-
tions: P(S,IT) = P(S)P(IT) and P(S)P(IT) = [T, [1, P(S[v,z]) [1,P(II[t, f]). The
first of these amounts to the assumption that projection rules are general to all verbs.
The second amounts to a strong assumption about the relationship among type
signatures—namely, that one’s behavior carries no information about the others’.!!

Together, they allow us to straightforwardly calculate P(D][v, f]).
(14)  P(D[v.f]) = 1T 1 = P(S[v, )Pz, f])

11 The second assumption is almost certainly too strong and is related to (though not a consequence of)
the fact that we do not represent type signatures as structured objects. We return to this in Section 6.
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Thus, given P(S) and P(IT), we can analytically compute P(D[v, f]). But how do
we similarly compute ]P’( [v, f])? We could play the same game we did before by

assuming that Vv, f : P(D[v, f], €[v, f]) = P(D[v, f])P(€[v, f]), thus yielding (15).
(15)  P(Dly, f]) =P (D, f]) (1 =P (e[v. /1)) + (1 =P (D, /1)) P (e[, f])

The problem is that this probabilistic representation does not straightforwardly map
to the kind of data we have: it assumes some binary representation, where we have
an ordinal representation. We thus require some generalized version of (15).

4.2 Ordinal link function

An ordinal link function can be thought of as a generalized version of (15). Without
getting into the fine details of ordinal links, the basic idea is to cut up some range of
(usually) continuous values—in our case, D[v, f] € [0, 1]—into contiguous subinter-
vals labeled in ascending order by the ordinal scale points. One then constructs a
function from the range of continuous values into probability distributions over the
scale points that uses the collection of subintervals. The particular kind of ordinal
link we use allows for the collection of subintervals that determines the link function
to vary with each participant. That is, each participant may cut up the [0, 1] interval
in a slightly different way.'?

4.3 Model fitting

For a fixed number of semantic type signatures 7', we use projected gradient descent
with adaptive gradient (Duchi, Hazan & Singer 2011) to optimize S € [0,1]V*7 and
II € [0,1)7*F to maximize the likelihood of the acceptability data. Thus, for each
setting of 7' we obtain representations Sy (1) € [0, 1]V*T and e (r) € [0, 1]7>F
that are optimal in the sense that they explain the data as well or better than any
other § € [0,1]V*T and IT € [0, 1]7*F,

4.4 Model comparison and selection

One thing we cannot tell from the above model fitting procedure alone is what the
‘right’ value of T is. In fact, ideally, we could analyze what the model does at many
different values of T'. But for reasons of space, this is not feasible. Therefore, we
need some way of selecting a model to look at.

12 See White et al. under reviewb for evidence that such an ordinal link is optimal for data collected
under Fisher et al.’s (1991) paradigm
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The problem of selecting such a value is common in the statistics and machine
learning literature. One standard method is to fit the model with various settings
of T, then calculate both how well the model explains the data—i.e., how small
the total error is—and how much explanatory power the model had to work with
while fitting the data. The best model is the one that maximizes explanation while
minimizing explanatory power. To carry out such a selection procedure, one needs a
way of quantifying the trade-off between fit and explanatory power.

We use the Akaike Information Criterion (AIC) to do this (Akaike 1974). The
AIC measures the information-theoretic ‘distance’ between a model and the true
(but unknown) data-generating process using the Kullback-Liebler divergence. The
optimal model under AIC is the one that minimizes this distance.

We find that a model with 12 semantic type signatures minimizes the AIC across
all values of T. The way to interpret this result is that 12 is a lower bound on
the number of semantic type signatures we should posit for the space of clause-
embedding verbs. The extent to which 12 is a good upper bound is dependent on (i)
how exhaustively we were able to sample the full space of clause-embedding verbs;
(i1) how exhaustively we were able to sample the full space of semantically relevant
subcategorization frames, and (iii) whether all possible semantic type signatures
relevant to clause-embedding are actually instantiated in English.

The full projection matrix for these 12 type signatures is shown in Figure 6, and
two slices of the S-selection matrix are shown in Figures 8 and 9. We analyze these
in the next section. In the remainder of the paper, we discuss how to interpret these
type signatures, focusing on a case study of interrogative v. declarative clauses.

5 Results

In this section, we present the results of the fitting and selection procedure, analyzing
only a subset of these results for reasons of space. (We provide a full analysis in a
paper in preparation.) As a case study we focus on semantic type signatures relevant
to declarative and interrogative selection. We noted in Section 1 that explaining the
distribution of declarative and interrogative embedded clauses is a major question in
the literature on clause-embedding verbs, and so we begin with a very brief overview
of the proposals that have been instantiated in this literature. Based on our results,
we then argue that many of these proposals are correct to some extent, though only
when relativized to particular verb classes.

5.1 Embedding declaratives and interrogatives

There are three types of verbs that take either declaratives or interrogatives: those
like believe, which take only declaratives; those like wonder, which take only
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Figure 6 Representation of projection rules for all semantic type signatures.
(Only labeled rows are discussed in the present paper.)

interrogatives; and those like know, which take both (Lahiri’s 2002 responsives).

(16) a. John believed {that, *whether} Mary went to the store.
b. John wondered {*that, whether} Mary went to the store.
c. John knew {that, whether} Mary went to the store.

Responsives have proven difficult to capture. There are roughly three approaches
in the literature to explaining the syntactic their distribution: (i) responsives are
ambiguous between a declarative- and an interrogative-taking variant—e.g., they
S-select both propositions and questions (Karttunen 1977a; Heim 1994; George
2011);'3 (ii) responsives only S-select propositions, and interrogatives either (iia)
always denote propositions (Groenendijk & Stokhof 1984), or (iib) they are some-
how cast into propositions by an operator or coercion rule (Egré 2008; Spector
& Egré 2015); or (iii) responsives only S-select questions, and declaratives (iiia)
either always denote questions (Rawlins 2013), or (iiib) they are somehow cast into
questions by an operator or rule (Uegaki 2012, to appear, 2015).

We cannot do justice to this rich literature here, but even at this coarse level of
analysis we can fruitfully use the abstract characterizations above to make predictions
about the results our model should produce if any one option is correct. In particular,
option (i) and options (ii) and (iii) pull apart in the following way: option (i) is at

13 We include approaches that posit regular polysemy under this heading (cf. George 2011).
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Figure 7  Probability of projection rules for propositions and questions

least compatible with there being two distinct projection rules for responsives—one
that projects onto declaratives and another that projects onto questions; in contrast,
options (i1) and (ii1) should posit only a single such rule that projects onto both.
What we in fact find is that both kinds of projection rules exist, but not for the
same verb classes. Verbs that S-select a recipient—i.e., communicative verbs like
say and tell—S-select a single type signature that projects onto both interrogatives
and declaratives, while verbs that do not S-select a recipient—e.g., cognitive verbs
like know—S-select two distinct type signatures: one that projects onto declaratives
and another that projects onto interrogatives. Furthermore, in the second case, we
find quantitative evidence that some kind of coercion can operate in both directions.

5.2 Cognitives v. communicatives

Figure 6 depicts the probabilistic projection rules our model learns. Along the
columns lie the full set of subcategorization frames we tested in our experiment and
along the rows are the 12 semantic type signatures our model infers (see Section
4.4). The model itself does not label these type signatures; we apply labels in Figure
6 based on the subcategorization frames they project onto, and we have labeled only
those type-signatures we discuss in detail in this paper.
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There are three things to note about Figure 6. First, there are two distinct type
signatures projecting onto declaratives and interrogatives when the clause is not
accompanied by another internal argument. We label these type signatures [_ P] and
[ Q]J, respectively. Second, when the clause is accompanied by another internal
argument—e.g., an NP or PP—there is a single type signature that projects onto both
declaratives and interrogatives: one that projects onto subcategorization frames with
an NP internal argument and another that projects onto subcategorization frames
with a PP internal argument. We label these [_ Ent P®Q] and [_ (Ent) P®Q],
respectively, and we refer to them as hybrid types. Finally, we see that, though [_ P]
and [_ Q] project most strongly onto declaratives and interrogatives, there is middling
probability that [_ P] projects onto interrogatives and [_ Q] onto declaratives.

This last result can be seen more clearly in Figure 7, which plots the probability
that [_ P] and [_ Q] project onto each frame. Importantly, we see that no frames are
strongly probable under both [_ P] and [_ Q]—i.e., there are no frames in the upper
right corner—and there are frames that are strongly probable for [_ P] (rightmost)
and strongly probable for [_ Q] (topmost). The frames with middling probability
for [_ Q] are exactly the declaratives with a complementizer, and the frames with
middling probability for [_ P] are the finite interrogatives (plus the NP direct object
frame). We conclude from this that our model is detecting coercion of a question
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into a proposition and coercion of a proposition into a question.

The verbs that take the [_ P] and [_ Q] type signatures are plotted in Figure 8.
We see that, as one would expect if these were in fact the type signatures [_ P] and
[_ Q], wonder takes only [_ Q] with high probability, believe takes only [_ P] with
high probability, and know takes both [_ P] and [_ Q] with high probability.

The verbs that take the [_ (Ent) P®Q] and [_ Ent P®Q] type signatures are plotted
in Figure 9. We see that this set includes only communicative verbs, suggesting
that the entity in this type signature has some sort of RECIPIENT role. One reason
that communicatives might have hybrid types is that they may encode reference to
Question Under Discussion as a part of their semantics (Anand & Hacquard 2014).
This in turn may be thought of as requiring a hybrid type that can represent multiple
kinds of content—e.g., informative and inquisitive content (cf. Groenendijk 2009;
Ciardelli, Groenendijk & Roelofsen 2013; Rawlins 2013).

In summary, for cognitive verbs, our modeling results support some version of
option (i), where there are both proposition- and question-selecting type signatures,
combined with coercion. For communication verbs, the results support instead an
approach where the verb selects just one hybrid type. While we cannot definitively
rule out the coercion approaches, these results are suggestive of an approach where
there is no coercion at the level of semantic types for communicatives.
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6 Conclusion

In this paper, we developed a computational model of S-selection that encodes
both the notion of systematic mappings from semantic type signature to syntactic
distribution—i.e., projection rules—and the notion of selectional noise. We then
collected a large-scale data set assessing the acceptability of 1,000 English clause-
embedding verbs in 50 distinct syntactic frames and fit the model to these data.
Finally, we analyzed a subset of the results, relating them to a long-standing question
in the literature on clause-embedding verbs and arguing that previous accounts need
to be relativized to particular verb classes.

We intend this model to be a first step in the longer term development of
theoretically-informed computational models. We conclude with some ways that
one could further develop both the model to ask finer-grained theoretical questions.

A straightforward place to start is by asking to what extent our framework can
be used to directly compare additive (Grimshaw-style) and multiplicative (Pesetsky-
style) accounts of selection. Our model abstracts across these approaches, but in
principle, its error representations can be transformed into purely additive or purely
multiplicative representations. This would allow us to ask, e.g., which approach
requires less lexical idiosyncrasy, thus reducing the question of which account to
favor to one of quantitative model comparison.

Another area to further develop is how the model represents the semantic type
signatures it does inference over. Currently, the model has no access a priori to what
the space of semantic type signatures is or to any relationships among those type
signatures. That is, nowhere does it encode that semantic type signatures such as
[_ Q], [_ Ent], [_ Ent Q] are possible or that they share constituent types.

In current work, we have been developing ways of inferring the structure of the
semantic type representations by explicitly representing (i) type constructors for
mapping raw types to structured type signatures; (ii) relationships between verbs and
raw types; and (ii1) relationships between raw types and syntactic constituents. We
believe that, beyond providing further insight into the structure of the type signature
space our model learns, these developments may provide insight into fundamental
questions about regular polysemy in the clause-embedding lexicon.

The main idea is that, if at least some forms of regular polysemy manifest
themselves as distinctions in semantic type signature (cf. Pustejovsky 1991, 1995;
Rappaport Hovav & Levin 1998; Asher & Pustejovsky 2006; Asher 2011), we
should in principle be able to apply to our model’s semantic type signatures the same
inference algorithm we applied to syntactic distributions. This is essentially what
the more elaborated model just described does. Preliminary investigations of this
elaborated model provide initial evidence for regular polysemy among cognitive
responsives (cf. George 2011).
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